Galileo Galilei - Vev

Galileo Galilei

Un article de Vev.

(Différences entre les versions)
Jump to: navigation, search
Version du 21 décembre 2007 à 20:00
Grook Da Oger (Discuter)

← Différence précédente
Version du 18 décembre 2007 à 11:01
Oz1sej (Discuter)
(Added legacy section)
Différence suivante →
Ligne 1: Ligne 1:
-{{Voir homonymes|Galilée}}+{{pp-semi-protected|small=yes}}
-'''Galilée''' ou ''Galileo Galilei'' (né à [[Pise]] le [[15 février]] [[1564]] et mort à [[Arcetri]] près de [[Florence]], le [[8 janvier]] [[1642]]) est un [[physicien]] et [[astronome]] [[italie]]n du {{XVIIe siècle}}, célèbre pour avoir jeté les fondements des [[science]]s [[mécanique]]s ainsi que pour sa défense opiniâtre de la conception [[Nicolas Copernic|copernicienne]] de l'[[univers]].+{{redirect6|Galileo|the positioning system|Galileo positioning system|other uses|Galileo (disambiguation)}}
-[[Image:galilee.jpg|thumb|220px|right|Galileo Galilei]]+{{Infobox_Scientist
-[[Image:Galileo.arp.300pix.jpg|thumb|220px|right|Portrait de Galileo Galilei par [[Giusto Sustermans]] en [[1636]].]]+|name = Galileo Galilei
 +|image = Galileo.arp.300pix.jpg|200px
 +|image_width = 200px
 +|caption = Portrait of Galileo Galilei by [[Giusto Sustermans]]
 +|birth_date = {{birth date|1564|2|15|mf=y}}<ref name="McTutor">{{cite web |url=http://www-history.mcs.st-andrews.ac.uk/Biographies/Galileo.html |publisher=[[University of St Andrews]], [[Scotland]] |work=The MacTutor History of Mathematics archive |title=Galileo Galilei |author=J J O'Connor and E F Robertson |accessdate=2007-07-24}}</ref>
 +|birth_place = [[Pisa]], [[Tuscany]] - [[Italy]]<ref name="McTutor"/>
 +|residence = [[Grand Duchy of Tuscany]]
 +|death_date = {{death date and age|1642|1|8|1564|2|15|mf=y}}<ref name="McTutor"/>
 +|death_place = [[Arcetri]], [[Tuscany]] - [[Italy]]<ref name="McTutor"/>
 +|field = [[Astronomy]], [[Physics]] and [[Mathematics]]
 +|work_institutions = [[University of Padua]]
 +|alma_mater = [[University of Pisa]]
 +|known_for = [[Kinematics]]</br>[[Telescope]]</br>[[Solar System]]
 +|religion = [[Roman Catholic]]
 +|footnotes =
 +}}
 +'''Galileo Galilei''' ([[15 February]] [[1564]]<ref name=birthdate>
 +[[#Reference-Drake-1978| Drake (1978, p.1).]] The date of Galileo's birth is given according to the [[Julian calendar]], which was then in force throughout the whole of Christendom. In 1582 it was replaced in Italy and several other Catholic countries with the [[Gregorian calendar]]. Unless otherwise indicated, dates in this article are given according to the Gregorian calendar.</ref> &ndash; [[8 January]] [[1642]])<ref name="McTutor"/><ref>{{ws|"[[s:Catholic Encyclopedia (1913)/Galileo Galilei|Galileo Galilei]]" in the 1913 ''Catholic Encyclopedia''}} by John Gerard. Retrieved [[11 August]] [[2007]]</ref> was a [[Tuscany|Tuscan]] ([[Italian people|Italian]]) [[physicist]], [[mathematician]], [[astronomer]], and [[philosopher]] who played a major role in the [[scientific revolution]]. His achievements include the first systematic studies of uniformly accelerated motion, improvements to the [[telescope]] and consequent astronomical observations, and support for [[Nicolaus Copernicus|Copernicanism]]. Galileo's empirical work was a significant break from the abstract [[Aristotelian]] approach of his time.
 +<!-- ==His relevance== Please discuss on talk page before restoring this heading-->
 +Galileo has been called the "father of modern observational [[astronomy]]",<ref>{{Citation | title = A Short History of Science to the Nineteenth Century | first = Charles | last = Singer | year = 1941 | publisher = Clarendon Press | url = http://www.google.com.au/books?id=mPIgAAAAMAAJ&pgis=1 }} (page 217)</ref> the "father of modern [[physics]]",<ref name="Einstein">{{cite book|last=Weidhorn|first=Manfred|title=The Person of the Millennium: The Unique Impact of Galileo on World History|year=2005|publisher=iUniverse|isbn=0595368778|pages=p. 155}}</ref> the "father of [[science]]",<ref name="Einstein" /> and “the Father of Modern Science.”<ref name=finocchiaro2007>[[#Reference-Finocchiaro-2007| Finocchiaro (2007)]].</ref> The motion of uniformly accelerated objects, taught in nearly all high school and introductory college physics courses, was studied by Galileo as the subject of [[kinematics]]. His contributions to observational astronomy include the discovery of the four largest satellites of Jupiter, named the [[Galilean moons]] in his honour, and the observation and analysis of [[sunspots]]. Galileo also worked in applied science and technology, improving [[compass]] design.
-== Les premières années ==+Galileo's championing of Copernicanism was controversial within his lifetime. The [[geocentric]] view had been dominant since the time of Aristotle, and the controversy engendered by Galileo's opposition to this view resulted in the [[Catholic Church|Catholic Church's]] prohibiting the advocacy of [[heliocentrism]] as potentially factual, because that theory had no decisive proof and was contrary to the literal meaning of Scripture.<ref name="contrary to scripture">[[#Reference-Sharratt-1996|Sharratt (1996, pp.127-131)]], [[#Reference-McMullin-2005a|McMullin (2005a)]].</ref> Galileo was eventually forced to recant his heliocentrism and spent the last years of his life under house arrest on orders of the [[Inquisition]].
-=== L'enfance ===+
-Galilée, de son véritable nom ''Galileo Galilei'', naît à Pise le 15 février 1564, fils de Vincenzo Galilei et de Giulia Ammannati di Pescia, l'aîné de leurs 7 enfants. La famille appartient à la petite noblesse et gagne sa vie dans le commerce. [[Vincenzo Galilei]], son père, est [[luthier]], musicien, chanteur, et auteur en [[1581]] d'un ''Dialogue de la musique moderne''. Il participe à des controverses sur la théorie musicale.+
-Galilée fait preuve très tôt d'une grande habileté manuelle et d'un bon sens de l'observation{{référence nécessaire}}. Enfant, il s'amuse à réaliser les maquettes de [[machine]]s qu'il a aperçues.+==Life==
 +Galileo was born in [[Pisa]] (then part of the [[Grand Duchy of Tuscany]]), the first of six children of [[Vincenzo Galilei]], a famous [[lutenist]] and [[music theory|music theorist]], and Giulia Ammannati. Although he seriously considered the priesthood as a young man, he enrolled for a medical degree at the University of Pisa at his father's urging. He did not complete this degree, but instead studied mathematics. In 1589, he was appointed to the chair of mathematics in Pisa. In 1591 his father died and he was entrusted with the care of his younger brother [[Michelagnolo Galilei|Michelagnolo]]. In 1592, he moved to the [[University of Padua]], teaching [[geometry]], [[mechanics]], and [[astronomy]] until 1610. During this period Galileo made significant discoveries in both pure science (for example, kinematics of motion, and astronomy) and applied science (for example, strength of materials, improvement of the telescope). His multiple interests included the study of [[astrology]], which in premodern disciplinary practice was seen as correlated to the studies of mathematics and astronomy.<ref>H. Darrel Rutkin. [http://www.stanford.edu/dept/HPST/colloquia0405.html Galileo, Astrology, and the Scientific Revolution: Another Look.] Program in History & Philosophy of Science & Technology, Stanford University. Retrieved on [[2007-04-15]].</ref>
-Il est éduqué chez ses parents jusqu'à l'âge de 10 ans. Ceux-ci déménagent alors à [[Florence]] et le confient à un prêtre du voisinage. Par la suite, Galilée entre au [[couvent]] de [[Santa Maria de Vallombrosa]] et y reçoit une éducation religieuse. Poussé au noviciat par ses maîtres{{référence nécessaire}}, il ne poursuit pas sa carrière ecclésiastique très longtemps : son père, profitant d'une maladie des yeux de son fils, le ramène à [[Florence]] en [[1579]].+Although a devout [[Roman Catholic]], Galileo fathered three children [[illegitimacy|out of wedlock]] with [[Marina Gamba]]. They had two daughters (Virginia in 1600 and Livia in 1601) and one son (Vincenzio, in 1606). Because of their illegitimate birth, their father considered the girls unmarriageable. Their only worthy alternative was the religious life. Both girls were sent to the convent of San Matteo in Arcetri and remained there for the rest of their lives.<ref name="daughters unmarriageable">[[#Reference-Sobel-2000| Sobel (2000, p.5).]] [http://www.galileosdaughter.com/firstchapter.shtml Chapter 1.] Retrieved on [[August 26]], [[2007]]. "But because he never married Virginia's mother, he deemed the girl herself unmarriageable. Soon after her thirteenth birthday, he placed her at the Convent of San Matteo in Arcetri."</ref> Virginia (b. 1600) took the name [[Maria Celeste]] upon entering the convent. She died on [[April 2]] [[1634]], and is buried with Galileo at the [[Basilica di Santa Croce di Firenze]]. Livia (b. 1601) took the name Suor Arcangela and was ill for most of her life. Vincenzio (b. 1606) was later legitimized and married Sestilia Bocchineri.
-Deux ans plus tard, Vincenzo Galilei l'inscrit à l'[[université de Pise]] où il suit des cours de [[médecine]] (sur les traces d'un de ses glorieux ancêtres, le magister Galilaeus de Galilaeis, 1370 - ~1450), mais sans y porter de l'intérêt. Il revient à Florence en 1585 sans avoir fini ses études ni obtenu son diplôme.+In 1610 Galileo published an account of his telescopic observations of the moons of Jupiter, using this observation to argue in favor of the sun-centered, [[Copernicus|Copernican]] theory of the universe against the dominant earth-centered [[Geocentric model#Ptolemaic system|Ptolemaic]] and Aristotelian theories. The next year Galileo visited Rome in order to demonstrate his telescope to the influential philosophers and mathematicians of the [[Jesuit]] Collegio Romano, and to let them see with their own eyes the reality of the four moons of Jupiter. While in Rome he was also made a member of the [[Accademia dei Lincei]]. In 1612, opposition arose to the Sun-centered solar system which Galileo supported. In 1614, from the pulpit of Santa Maria Novella, Father [[Tommaso Caccini]] (1574–1648) denounced Galileo's opinions on the motion of the Earth, judging them dangerous and close to [[Christian heresy|heresy]]. Galileo went to Rome to defend himself against these accusations, but, in 1616, [[Robert Bellarmine|Cardinal Roberto Bellarmino]] personally handed Galileo an admonition enjoining him neither to advocate nor teach Copernican astronomy.<ref>There are contradictory documents describing the nature of this admonition and the circumstances of its delivery. Finocchiaro, ''The Galileo Affair'', pp.147–149, 153</ref> During 1621 and 1622 Galileo wrote his first book, ''[[The Assayer]]'' (''Il Saggiatore''), which was approved and published in 1623. In 1630, he returned to Rome to apply for a license to print the ''[[Dialogue Concerning the Two Chief World Systems]]'', published in [[Florence]] in 1632. In October of that year, however, he was ordered to appear before the [[Congregation for the Doctrine of the Faith|Holy Office]] in Rome.
-=== La découverte de sa vocation ===+==Scientific methods==
-[[Image:Galileo Galilei 2.jpg|thumb|right|220px|Galileo Galilei par [[Domenico Robusti]] en [[1605]].]]+Galileo Galilei pioneered the use of quantitative experiments whose results could be analyzed with mathematical precision (More typical of science at the time were the qualitative studies of [[William Gilbert]], on magnetism and electricity). Galileo's father, [[Vincenzo Galilei]], a [[lute]]nist and music theorist, had performed experiments establishing perhaps the oldest known non-linear relation in physics: for a stretched string, the pitch varies as the square root of the tension. These observations lay within the framework of the [[Pythagoras#Musical theories and investigations|Pythagorean]] tradition of music, well-known to instrument makers, which included the fact that subdividing a string by a whole number produces a harmonious scale. Thus, a limited amount of mathematics had long related music and physical science, and young Galileo could see his own father's observations expand on that tradition. Galileo is perhaps the first to clearly state that the laws of nature are mathematical. In ''[[The Assayer]]'' he wrote "Philosophy is written in this grand book, the universe ... It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures; ...".<ref>In [[#Reference-Drake-1957| Drake (1957, pp.237−238)]]</ref> His mathematical analyses are a further development of a tradition employed by late scholastic natural philosophers, which Galileo learned when he studied philosophy.<ref> Wallace, (1984)</ref> Although he tried to remain loyal to the Catholic Church, his adherence to experimental results, and their most honest interpretation, led to a rejection of blind allegiance to authority, both philosophical and religious, in matters of science. In broader terms, this aided to separate science from both [[philosophy]] and religion; a major development in human thought.
-Dès [[1583]], Galilée est initié aux [[mathématiques]] par [[Ostilio Ricci]], un ami de la famille, élève de [[Tartaglia]]. Bien que Ricci soit un savant peu renommé, il a l'habitude, rare à l'époque, de lier la théorie à la pratique par l'expérience.+
-A l'âge de dix-neuf ans, observant dans la cathédrale de [[Pise]] une lampe qui se balançait à la voûte, et remarquant que les oscillations en étaient isochrones, il eut l'idée d'appliquer le pendule à la mesure du temps. Toutefois, ce ne fut qu'à la fin de sa vie, dans un ouvrage publié en 1638, qu'il exposa cette découverte.+By the standards of his time, Galileo was often willing to change his views in accordance with observation. Philosopher of science [[Paul Feyerabend]] also noted the supposedly improper aspects of Galileo's methodology, but he argued that Galileo's methods could be justified retroactively by their results. The bulk of Feyerabend's major work, ''Against Method'' (1975), was devoted to an analysis of Galileo, using his astronomical research as a case study to support Feyerabend's own anarchistic theory of [[scientific method]]. As he put it: 'Aristotelians [...] demanded strong empirical support while the Galileans were content with far-reaching, unsupported and partially refuted theories. I do not criticize them for that; on the contrary, I favour [[Niels Bohr]]'s "this is not crazy enough."'<ref>Paul Feyerabend, ''Against Method'' (third edition, London: Verso, 1993), p. 129.</ref> In order to perform his experiments, Galileo had to set up standards of length and time, so that measurements made on different days and in different laboratories could be compared in a reproducible fashion. For measurements of particularly short intervals of time, Galileo sang songs with whose timing he was familiar{{Fact|date=October 2007}}.
-Ébloui par l'œuvre d'[[Euclide]]{{référence nécessaire}}, n'ayant aucun goût pour la [[médecine]] et encore moins pour les disputes [[scolastique]]s et la philosophie [[Aristote|aristotélicienne]]{{référence nécessaire}}, Galilée réoriente ses études vers les [[mathématiques]]. Dès lors, il se réclame de [[Pythagore]], de [[Platon]] et d'[[Archimède]] et contre l'aristotélisme{{référence nécessaire}}. Encore étudiant, il découvre la loi de l'[[Isochrone|isochronisme]] des [[pendule (physique)|pendule]]s{{référence nécessaire}}, première étape de ce qui sera la découverte d'une nouvelle science : la [[mécanique]]{{référence nécessaire}}. Dans le courant [[humaniste]], il rédige aussi un [[pamphlet]] féroce sur le professorat de son temps. Toute sa vie, Galilée refuse d'être comparé aux [[professeur]]s de son époque, ce qui lui vaudra d'avoir de nombreux ennemis{{référence nécessaire}}.+Galileo showed a remarkably modern appreciation for the proper relationship between mathematics, theoretical physics, and experimental physics. He understood the parabola, both in terms of [[conic section]]s and in terms of the ordinate (y) varying as the square of the abscissa (x). Galilei further asserted that the parabola was the theoretically-ideal trajectory for uniformly accelerated motion, in the absence of friction and other disturbances. He also noted that there are limits to the validity of this theory, stating that it was appropriate only for laboratory-scale and battlefield-scale trajectories, and noting on theoretical grounds that the parabola could not possibly apply to a trajectory so large as to be comparable to the size of the planet.<ref> [[#Reference-Galileo-1954| Galilei (1954, p.250);]] [[#Reference-Favaro-1890| Favaro (1898,]] [http://moro.imss.fi.it/lettura/LetturaWEB.DLL?VOL=8&VOLPAG=274 8:274)] {{it icon}}. </ref> Thirdly, Galilei recognized that his experimental data would never agree exactly with any theoretical or mathematical form, because of the imprecision of measurement, irreducible friction, and other factors.
-Deux ans plus tard, il est de retour à [[Florence]] sans diplôme, mais avec de grandes connaissances et une grande curiosité scientifique.+According to [[Stephen Hawking]], Galileo probably bears more of the responsibility for the birth of modern science than anybody else,<ref name="Hawking galileo">[[#Reference-Hawking-1988| Hawking (1988, p.179)]].</ref> and [[Albert Einstein]] called him the father of modern science.<ref name="father of science Einstein">[[#Reference-Einstein-1954| Einstein (1954, p.271)]]. "Propositions arrived at by purely logical means are completely empty as regards reality. Because Galileo realised this, and particularly because he drummed it into the scientific world, he is the father of modern physics&mdash;indeed, of modern science altogether."</ref>
-===De Florence à Pise (1585-1592)===+==Astronomy==
-[[Image:Pisa.Duomo.dome.Riminaldi01.jpg|thumb|220px|left|Le [[Pendule pesant]] de Galilée à la [[Cathédrale de Pise|Cathédrale (Duomo) de Pise]].]]+===Contributions===
-Galilée commence par [[Démonstration|démontrer]] plusieurs [[théorème]]s sur le [[centre de gravité]] de certains solides dans son ''Theoremata circa centrum gravitatis solidum'' et entreprend en [[1586]] de reconstituer la [[Hydrostatique|balance hydrostatique]] d'[[Archimède]] ou Bilancetta<ref> Voir [http://metalibri.incubadora.fapesp.br/portal/authors/LaBilancetta ici]</ref>. En même temps, il poursuit ses études sur les [[oscillation]]s du [[pendule pesant]] et invente le [[pulsomètre]]. Cet appareil permettait d'aider à la mesure du [[pouls]] et fournissait un [[Unité de mesure|étalon]] de [[temps]], qui n'existait pas à l'époque. Il débute aussi ses études sur la [[Chute libre (physique)|chute des corps]].+[[Image:Galileo.script.arp.600pix.jpg.jpg|thumb|200px|right|It was on this page that Galileo first noted an observation of the [[natural satellite|moons]] of [[Jupiter (planet)|Jupiter]]. This observation upset the notion that all celestial bodies must revolve around the Earth. Galileo published a full description in ''Sidereus Nuncius'' in March 1610]][[Image:Phases-of-Venus.svg|thumb|200px|right|The phases of Venus, observed by Galileo in 1610 ]]
 +Based only on uncertain descriptions of the telescope, invented in the [[Netherlands]] in 1608, Galileo, in that same year, made a telescope with about 3x magnification, and later made others with up to about 32x magnification. With this improved device he could see magnified, upright images on the earth - it was what is now known as a terrestrial telescope, or spyglass. He could also use it to observe the sky; for a time he was one of very few who could construct telescopes good enough for that purpose. On [[25 August]] [[1609]], he demonstrated his first telescope to [[Venice|Venetian]] lawmakers. His work on the device made for a profitable sideline with merchants who found it useful for their shipping businesses and trading issues. He published his initial telescopic astronomical observations in March 1610 in a short treatise entitled ''[[Sidereus Nuncius]]'' (''Starry Messenger'').
-En [[1588]], il est invité par l'[[Academia Fiorentina]] à présenter deux leçons sur ''la forme, le lieu et la dimension de l'[[Enfer]] de [[Dante Alighieri|Dante]]''.+On [[January 7]] [[1610]] Galileo observed with his telescope what he described at the time as "three fixed stars, totally invisible<ref name=invisible>i.e. invisible to the naked eye.</ref> by their smallness", all within a short distance of [[Jupiter (planet)|Jupiter]], and lying on a straight line through it.<ref name="jupiter's moons">[[#Reference-Drake-1978| Drake (1978, p.146).]]</ref> Observations on subsequent nights showed that the positions of these "stars" relative to Jupiter were changing in a way that would have been inexplicable if they had really been fixed stars. On [[January 10]] Galileo noted that one of them had disappeared, an observation which he attributed to its being hidden behind Jupiter. Within a few days he concluded that they were [[orbit]]ing Jupiter:<ref name=moonconclusion> In ''Sidereus Nuncius'' [[#Reference-Favaro-1890| (Favaro, ]] [http://moro.imss.fi.it/lettura/LetturaWEB.DLL?VOL=3&VOLPAG=81 1892, 3:81] {{latin}}) Galileo stated that he had reached this conclusion on [[January 11]]. [[#Reference-Drake-1978| Drake (1978, p.152)]], however, after studying unpublished manuscript records of Galileo's observations, concluded that he did not do so until [[January 15]]. </ref> he had discovered three of Jupiter's four largest [[natural satellite|satellites]] (moons): [[Io (moon)|Io]], [[Europa (moon)|Europa]], and [[Callisto (moon)|Callisto]]. He discovered the fourth, [[Ganymede (moon)|Ganymede]], on [[January 13]]. Galileo named the four satellites he had discovered ''Medicean stars'', in honour of his future patron, Cosimo II de' Medici, Grand Duke of Tuscany, and Cosimo's three brothers.<ref name="medicean stars">[[#Reference-Sharratt-1996|Sharratt (1996, p.17)]].</ref> Later astronomers, however, renamed them [[Galilean moons|''Galilean satellites'']] in honour of Galileo himself.
-Parallèlement à ses activités, il cherche un emploi de [[professeur]] dans une [[université]], il rencontre alors, entre autres grands personnages, le père [[Compagnie de Jésus|jésuite]] [[Christophorus Clavius]], sommité des [[mathématiques]] au [[Collège pontifical]]. Il rencontre aussi le [[mathématicien]] [[Guidobaldo del Monte]]. Ce dernier recommande Galilée au [[Liste des grands-ducs de Toscane|duc]] [[Ferdinand Ier de Médicis|Ferdinand I{{er}} de Toscane]], qui le nomme à la [[chaire]] de [[Mathématiques|mathématique]] de l'[[université de Pise]] pour 60 écus d'or par an, une misère. Sa leçon inaugurale a lieu le [[12 novembre]] [[1589]].+A planet with smaller planets orbiting it was problematic for the orderly, comprehensive picture of the [[geocentric model]] of the universe, in which everything was supposed to circle around the Earth. As a consequence, many astronomers and philosophers initially refused to believe that Galileo could have discovered such a thing.<ref name=scepticism>[[#Reference-Drake-1978| Drake (1978, p.158&ndash;68)]], [[#Reference-Sharratt-1996| Sharratt (1996, p.18&ndash;19)]].</ref>
-En [[1590]] et [[1591]], il découvre la [[cycloïde]] et s'en sert pour dessiner des [[arche]]s de [[pont]]s.+Galileo continued to observe the satellites over the next eighteen months, and by mid 1611 he had obtained remarkably accurate estimates for their periods&mdash;a feat which Kepler had believed impossible.<ref name=periods>[[#Reference-Drake-1978| Drake (1978, p.168)]], [[#Reference-Sharratt-1996| Sharratt (1996, p.93)]].</ref>
-Il expérimente également sur la [[Chute libre (physique)|chute des corps]] et rédige son premier ouvrage de [[mécanique]], le ''De motu''. La réalité même de ces « expériences » est aujourd'hui largement mise en doute et serait une invention de son premier biographe, [[Vincenzo Viviani]]. Ce volume contient des idées nouvelles pour l'époque, mais il expose encore, bien évidemment les principes de l'[[Aristote|école aristotélicienne]] et le système de [[Ptolémée]]. Galilée les enseigne d'ailleurs longtemps après avoir été convaincu de la justesse du système [[Nicolas Copernic|copernicien]], faute de preuves tangibles.{{clr}}+
-=== L'université de Padoue (1592-1610) ===+From September 1610, Galileo observed that [[Venus (planet)|Venus]] exhibited a full set of [[Lunar phase|phase]]s similar to that of the [[Moon]]. The [[heliocentric model]] of the solar system developed by [[Copernicus]] predicted that all phases would be visible since the orbit of Venus around the [[Sun]] would cause its illuminated hemisphere to face the Earth when it was on the opposite side of the Sun and to face away from the Earth when it was on the Earth-side of the Sun. In contrast, the [[geocentric model]] of [[Ptolemy]] predicted that only crescent and new phases would be seen, since Venus was thought to remain between the Sun and Earth during its orbit around the Earth. Galileo's observations of the phases of Venus proved that it orbited the Sun and lent support to (but did not prove) the [[heliocentric model]].
-En [[1592]], Galilée part enseigner à l'[[université de Padoue]] où il reste 18 ans. Le départ de [[Pise]], après seulement 3 ans, s'explique par un différend l'opposant à un fils du grand-duc [[Ferdinand Ier de Médicis|Ferdinand I{{er}} de Toscane]].+Galileo also observed the planet [[Saturn (planet)|Saturn]], and at first mistook its rings for planets, thinking it was a three-bodied system. When he observed the planet later, Saturn's rings were directly oriented at Earth, causing him to think that two of the bodies had disappeared. The rings reappeared when he observed the planet in 1616, further confusing him.<ref>Baalke, Ron. [http://www2.jpl.nasa.gov/saturn/back.html Historical Background of Saturn's Rings.] Jet Propulsion Laboratory, California Institute of Technology, NASA. Retrieved on [[2007-03-11]]</ref>
-[[Padoue]] appartenait à la puissante [[République de Venise]], ce qui garantissait à Galilée une grande liberté intellectuelle, l'[[Inquisition]] y étant très peu puissante.+Galileo was one of the first Europeans to observe [[sunspot]]s. He also reinterpreted a sunspot observation from the time of [[Charlemagne]], which formerly had been attributed (impossibly) to a transit of [[Mercury (planet)|Mercury]]. The very existence of sunspots showed another difficulty with the unchanging perfection of the heavens as assumed in the older philosophy. And the annual variations in their motions, first noticed by [[Francesco Sizzi]], presented great difficulties for both the geocentric system and that of [[Tycho Brahe]]. A dispute over priority in the discovery of sunspots, and in their interpretation, led Galileo to a long and bitter feud with the Jesuit [[Christoph Scheiner]]; in fact, there is little doubt that both of them were beaten by [[David Fabricius]] and his son [[Johannes Fabricius|Johannes]]. Scheiner quickly adopted Kepler's 1615 proposal of the modern telescope design, which gave larger magnification at the cost of inverted images; Galileo apparently never changed to Kepler's design.
-Même si [[Giordano Bruno]] avait été livré à l'Inquisition par les [[patricien]]s de la République, Galilée pouvait effectuer ses recherches sans trop de soucis. [[Venise]] est alors très réputée pour son [[arsenal]], ce qui offre à Galilée de grandes possibilités. Détail qui a son importance, la ville est également célèbre pour la qualité de son [[verre|industrie verrière]].+
-Il enseigne la [[mécanique]] appliquée, les [[mathématiques]], l'[[astronomie]] et l'[[poliorcétique|architecture militaire]]. +Galileo was the first to report lunar [[mountain]]s and [[impact crater|crater]]s, whose existence he deduced from the patterns of light and shadow on the Moon's surface. He even estimated the mountains' heights from these observations. This led him to the conclusion that the Moon was "rough and uneven, and just like the surface of the Earth itself," rather than a perfect [[sphere]] as Aristotle had claimed. Galileo observed the [[Milky Way]], previously believed to be [[Nebula|nebulous]], and found it to be a multitude of [[star]]s packed so densely that they appeared to be clouds from Earth. He located many other stars too distant to be visible with the naked eye. Galileo also observed the planet [[Neptune (planet)|Neptune]] in 1612, but did not realize that it was a planet and took no particular notice of it. It appears in his notebooks as one of many unremarkable dim stars.
-Il professait alors publiquement le système de [[Ptolémée]], n'osant pas encore s'insurger contre les idées admises, bien qu'ayant déjà adopté personnellement le système de [[Copernic]]. Ses leçons de mécanique eurent un succès considérable, et le Père Mersenne publiait en France en 1674 ''les Méchaniques de Galilée''.+
-Depuis la mort de son père en [[1591]], Galilée doit subvenir aux besoins de la famille. Il est accaparé par ses tâches d'enseignement : il donne de nombreux cours particuliers à de riches étudiants qu'il héberge chez lui. Mais il est piètre gestionnaire et seule l'aide financière de ses protecteurs et amis lui permet d'équilibrer ses comptes.+===Controversy over comets and ''The Assayer''===
 +{{Main|The Assayer}}
-En [[1593]], il rédige le ''Trattato di Forticazioni'' et le ''Trattato di Meccaniche'' à l'intention de ses étudiants de cours particuliers. Les travaux de Galilée permettent une meilleure efficacité de l'[[artillerie|artillerie lourde]] (ils établissent qu'un [[Canon (artillerie)|canon]] devait être pointé à 45° pour avoir sa portée maximale) et ne font l'objet d'aucune contestation.+In 1619 Galileo became embroiled in a controversy with Father [[Horatio Grassi]], the professor of mathematics at the Jesuit [[Collegio Romano]]. It began as a dispute over the nature of comets, but by the time Galileo had published ''[[The Assayer]]'' (''Il Saggiatore'') in 1623, his last salvo in the dispute, it had become a much wider argument over the very nature of Science itself. Because ''The Assayer'' contains such a wealth of Galileo's ideas on how Science should be practised, it has been referred to as his scientific manifesto.<ref name="scientific manifesto">[[#Reference-Drake-1960| Drake (1960, pp.vii,xxiii-xxiv)]], [[#Reference-Sharratt-1996| Sharratt (1996, pp.139-140)]].</ref>
-En [[1597]], il améliore et fabrique un [[compas de proportion]], le ''compas géométrique et militaire'', ancêtre de la [[règle à calcul]], qui connaît un grand succès commercial. Il n'en rédige le mode d'emploi que neuf ans plus tard.+Early in 1619 Father Grassi had anonymously published a pamphlet, ''[[The Assayer#disputatio|An Astronomical Disputation on the Three Comets of the Year 1618]]''<!--This should eventually link to a section in the article on the Assayer -->,<ref name="disputatio">[[#Reference-Grassi-1960a| Grassi (1960a)]].</ref> which discussed the nature of a comet that had appeared late in November of the previous year. Grassi concluded that the comet was a fiery body which had moved along a segment of a great circle at a constant distance from the earth,<ref name="grassi great circle">[[#Reference-Drake-1978| Drake (1978, p.268)]], [[#Reference-Grassi-1960a| Grassi (1960a, p.16)]].</ref> and that it had been located well beyond the moon.
-En [[1599]], Galilée participe à la fondation de l’[[Accademia dei Ricovrati]] avec l’[[abbé]] [[Federico Cornaro]].+Grassi's arguments and conclusions were criticised in a subsequent article, ''[[The Assayer#Discourse on Comets|Discourse on the Comets]]''<!--This should eventually link to a section in the article on the Assayer -->,<ref name="discourse on comets">[[#Reference-Galileo&Guiducci-1960| Galilei & Guiducci (1960)]].</ref> published under the name of one of Galileo's disciples, a Florentine lawyer named [[Mario Guiducci]], although it had been largely written by Galileo himself.<ref name="authorship of discourse">[[#Reference-Drake-1960| Drake (1960, p.xvi)]].</ref> Galileo and Guiducci offered no definitive theory of their own on the nature of comets, <ref name="criticism of previous theories">[[#Reference-Drake-1957| Drake (1957, p.222)]], [[#Reference-Drake-1960| Drake (1960, p.xvii)]].</ref> although they did present some tentative conjectures which we now know to be mistaken.
-La même année, Galilée rencontre Marina Gamba, une jeune [[Venise|Vénitienne]] issue de famille modeste qui a déjà des enfants avec laquelle il entretient une liaison jusqu'en [[1610]] (ils ne sont pas mariés et ne vivent pas sous le même toit). En [[1600]], sa première fille Virginia naît, suivie par sa sœur Livia en [[1601]], puis un fils, Vincenzo, en [[1606]]. Après la séparation (non conflictuelle) du couple, Galilée se charge des enfants ; il place plus tard ses filles au couvent.+In its opening passage, Galileo and Guiducci's ''Discourse'' gratuitously insulted the Jesuit [[Christopher Scheiner]], <ref name="Scheiner insult">[[#Reference-Sharratt-1996| Sharratt (1996, p.135)]], [[#Reference-Drake-1960| Drake (1960, p.xii)]], [[#Reference-Galileo&Guiducci-1960| Galilei & Guiducci (1960, p.24)]].</ref> and various uncomplimentary remarks about the professors of the Collegio Romano were scattered throughout the work.<ref name="uncomplimentary remark">[[#Reference-Sharratt-1996| Sharratt (1996, p.135)]].</ref> The Jesuits were offended,<ref name="jesuits offended">[[#Reference-Sharratt-1996| Sharratt (1996, p.135)]], [[#Reference-Drake-1960| Drake (1960, p.xvii)]].</ref> and Grassi soon replied with a polemical tract of his own, ''[[The Assayer#astronomical balance|The Astronomical and Philosophical Balance]]'',<ref name="astronomical balance">[[#Reference-Grassi-1960b| Grassi (1960b)]].</ref><!--This should eventually link to a section in the article on the Assayer --> under the pseudonym Lothario Sarsi, purporting to be one of his own pupils.
-=== L'année 1604 ===+''The Assayer'',<ref name="the assayer">[[#Reference-Galileo-1960| Galilei (1960)]].</ref> was Galileo's devastating reply to the ''Astronomical Balance''. It has been widely regarded as a masterpiece of polemical literature,<ref name="masterpiece of polemics">[[#Reference-Sharratt-1996| Sharratt (1996, p.137)]], [[#Reference-Drake-1957| Drake (1957, p.227)]].</ref> in which "Sarsi's" arguments are subjected to withering scorn.<ref name="withering scorn">[[#Reference-Sharratt-1996| Sharratt (1996, p.138-142)]].</ref> It was greeted with wide acclaim, and particularly pleased the new pope, [[Urban VIII]], to whom it had been dedicated.<ref name="assayer success">[[#Reference-Drake-1960| Drake (1960, p.xix)]].</ref>
-[[1604]] est une année ''mirabilis'' pour Galilée :+Galileo's dispute with Grassi permanently alienated many of the Jesuits who had previously been sympathetic to his ideas,<ref name="jesuit alienation">[[#Reference-Drake-1960| Drake (1960, p.vii)]].</ref> and Galileo and his friends were convinced that these Jesuits were responsible for bringing about his later condemnation.<ref name="jesuits responsible">[[#Reference-Sharratt-1996| Sharratt (1996, p.175)]].</ref> The evidence for this is at best equivocal, however.<ref name="evidence of jesuits">[[#Reference-Sharratt-1996| Sharratt (1996, pp.175-178)]].</ref>
-*En juillet, il teste sa pompe à eau dans un jardin de [[Padoue]].+===Galileo, Kepler and theories of tides===
-*En octobre, il découvre la [[Chute libre (physique)|loi du mouvement uniformément accéléré]], qu'il associe à une loi des [[vitesse]]s erronées.+Cardinal Bellarmine had written in 1615 that the Copernican system could not be defended without "a true [physical] demonstration that the sun does not circle the earth but the earth circles the sun".<ref>Finocchiaro (1989), pp. 67&ndash;9.</ref> Galileo considered his theory of the tides to provide the required physical proof of the motion of the earth. This theory was so important to Galileo that he originally intended to entitle his ''Dialogue on the Two Chief World Systems'' the ''Dialogue on the Ebb and Flow of the Sea''.<ref>Finocchiaro (1989), p. 354, n. 52</ref> For Galileo, the [[tide]]s were caused by the sloshing back and forth of water in the seas as a point on the Earth's surface speeded up and slowed down because of the Earth's rotation on its axis and revolution around the Sun. Galileo circulated his first account of the tides in 1616, addressed to Cardinal Orsini.<ref>Finocchiaro (1989), pp.119&ndash;133</ref>
-*En décembre, il débute son observation d'une [[nova]] connue depuis le [[10 octobre]] au moins. Il consacre 5 leçons sur le sujet le mois suivant, et en février [[1605]] il copublie ''Dialogo de Cecco di Ronchitti in Perpuosito de la Stella Nova'' avec [[Girolamo Spinelli]]. Bien que l'apparition d'une nouvelle [[étoile]], et sa disparition soudaine, entre en totale contradiction avec la théorie établie de l'inaltérabilité des cieux, Galilée reste encore [[Aristote|aristotélicien]] en public, mais il est déjà fermement [[copernicien]] en privé. Il attend la preuve irréfutable sur laquelle s'appuyer pour dénoncer l'aristotélisme.+
-Reprenant ses études sur le [[mouvement (mécanique)|mouvement]], Galilée « montre » que les [[projectile]]s suivent, dans le [[vide]], des [[trajectoire]]s [[Parabole|paraboliques]]. Il faudra la théorie de la [[loi universelle de la gravitation|gravitation universelle]] de [[Isaac Newton|Newton]], pour pouvoir la généraliser aux [[missile]]s [[balistique]]s, dont les trajectoires sont en fait [[Ellipse (mathématiques)|elliptique]]s.+If this theory were correct, there would be only one high tide per day. Galileo and his contemporaries were aware of this inadequacy because there are two daily high tides at [[Venice]] instead of one, about twelve hours apart. Galileo dismissed this anomaly as the result of several secondary causes, including the shape of the sea, its depth, and other factors.<ref>Finocchiaro (1989), pp.127&ndash;131 and Drake (1953), pp. 432&ndash;6</ref> Against the assertion that Galileo was deceptive in making these arguments, [[Albert Einstein]] expressed the opinion that Galileo developed his "fascinating arguments" and accepted them uncritically out of a desire for physical proof of the motion of the Earth.<ref>Einstein (1952) p. xvii</ref>
-=== De 1606 à 1609 ===+Galileo dismissed as a "useless fiction" the idea, held by his contemporary [[Johannes Kepler]], that the moon caused the tides.<ref>Finocchiaro (1989), p. 128</ref> Galileo also refused to accept [[Johannes Kepler|Kepler's]] elliptical orbits of the planets,<ref>Sachiko Kusukawa. [http://www.hps.cam.ac.uk/starry/galtele.html Starry Messenger. The Telescope], Department of History and Philosophy of Science of the University of Cambridge. Retrieved on [[2007-03-10]]</ref> considering the circle the "perfect" shape for planetary orbits.
-En [[1606]], Galilée construit son premier [[thermoscope]], premier appareil de l'histoire permettant de comparer de façon objective le niveau de [[chaud]] et de [[froid]]. Cette même année, Galilée et deux de ses amis tombent malades le même jour d'une même [[maladie infectieuse]]. Seul Galilée survit, mais il restera perclus de [[rhumatisme]]s pour le restant de ses jours.+==Technology==
 +[[Image:Galilee.jpg|thumb|left|150px|Galileo Galilei. Portrait in crayon by Leoni]]
 +[[Image:Galileo telescope replica.jpg|thumb|right|200px|A replica of the earliest surviving telescope attributed to Galileo Galilei, on display at the [[Griffith Observatory]]]]
-Dans les deux années qui suivent, le savant étudie les armatures d'[[aimant]]s. On peut encore voir ses travaux au [[Musée de la Storia della Scienza|musée d'Histoire de la Science]] (''Musée de la Storia della Scienza'') de [[Florence]].+Galileo made a number of contributions to what is now known as [[technology]], as distinct from pure physics, and suggested others. This is not the same distinction as made by Aristotle, who would have considered all Galileo's physics as ''techne'' or useful knowledge, as opposed to ''episteme'', or philosophical investigation into the causes of things. Between 1595&ndash;1598, Galileo devised and improved a ''Geometric and Military Compass'' suitable for use by [[artillery|gunners]] and [[surveying|surveyors]]. This expanded on earlier instruments designed by [[Niccolò Tartaglia]] and [[Guidobaldo del Monte]]. For gunners, it offered, in addition to a new and safer way of elevating [[cannon]]s accurately, a way of quickly computing the charge of [[gunpowder]] for [[Round shot|cannonball]]s of different sizes and materials. As a geometric instrument, it enabled the construction of any regular [[polygon]], computation of the area of any polygon or circular sector, and a variety of other calculations. About [[Timeline of temperature and pressure measurement technology|1593]], Galileo constructed a [[thermometer]], using the expansion and contraction of air in a bulb to move water in an attached tube.
-== La lunette et ses conséquences ==+In 1609, Galileo was among the first to use a [[refracting telescope]] as an instrument to observe stars, planets or moons. In 1610, he used a telescope at close range to magnify the parts of insects,<ref name="telescope microscope">[[#Reference-Drake-1978| Drake (1978, p.163-164)]], [[#Reference-Favaro-1890| Favaro ]] [http://moro.imss.fi.it/lettura/LetturaWEB.DLL?VOL=3&VOLPAG=163 (1892, 3:163]-[http://moro.imss.fi.it/lettura/LetturaWEB.DLL?VOL=3&VOLPAG=164 164)]{{la icon}}.</ref> and by 1624 he had perfected<ref name="microscope perfection">Probably in 1623, according to [[#Reference-Drake-1978| Drake (1978, p.286)]].</ref> a compound [[microscope]]. He gave one of these instruments to Cardinal Zollern in May of that year for presentation to the Duke of Bavaria,<ref name="Zollern microscope"> [[#Reference-Drake-1978| Drake (1978, p.289)]], [[#Reference-Favaro-1890| Favaro ]] [http://moro.imss.fi.it/lettura/LetturaWEB.DLL?VOL=13&VOLPAG=177 (1903, 13:177) ]{{it icon}}. </ref> and in September he sent another to [[Federico Cesi| Prince Cesi]], the founder of the [[Linceans| Academy of Lynxes]].<ref name="Cesi microscope">[[#Reference-Drake-1978| Drake (1978, p.286)]], [[#Reference-Favaro-1890| Favaro ]] [http://moro.imss.fi.it/lettura/LetturaWEB.DLL?VOL=13&VOLPAG=208 (1903, 13:208)]{{it icon}}. The inventors of the telescope and microscope remain debatable. A general view on this can be found in [http://micro.magnet.fsu.edu/optics/timeline/people/lippershey.html Hans Lippershey] (last updated [[2003-08-01]]), © 1995-2007 by Davidson, Michael W.<!--NO LINK to the Republican political activist--> and the [[Florida State University]]. Retrieved [[2007-08-28]]</ref><ref>Van Helden, Al. [http://galileo.rice.edu/chron/galileo.html Galileo Timeline] (last updated 1995), The Galileo Project. Retrieved [[2007-08-28]]. See also [[Timeline of microscope technology]].</ref> Illustrations of insects made using one of Galileo's microscopes, and published in 1625, appear to have been the [[Timeline of microscope technology|first]] clear documentation of the use of a compound microscope.<ref name="microscope use"> [[#Reference-Drake-1978| Drake (1978, p.286)]].</ref>
-=== Perfectionnement de la lunette astronomique ===+
-[[Image:Galileo telescope replica.jpg|thumb|220px|right|Réplique d'une [[lunette astronomique]] de Galilée.]]+
-[[Image:Galileos Moon.jpg|thumb|220px|right|Dessin de la [[lune]] par Galilée, publié dans " [[Sidereus Nuncius]] " en [[1610]].]]+
-En mai [[1609]], Galilée (ou plutôt [[Paolo Sarpi]] ?) reçoit de [[Paris]] une lettre du Français [[Jacques Badovere]], l'un de ses anciens étudiants, qui lui confirme une rumeur insistante : l'existence d'une [[Lunette astronomique|lunette]] permettant de voir les objets éloignés. Fabriquée en [[Hollande]], cette lunette aurait déjà permis de voir des [[étoile]]s invisibles à l'œil nu. Sur cette seule description, Galilée, qui ne donne plus de cours à [[Cosme II de Médicis]], construit sa première lunette. Contrairement à la lunette hollandaise, celle-ci ne déforme pas les objets et les grossit 6 fois, soit deux fois plus que sa concurrente. Il est aussi le seul à l'époque à réussir à obtenir une image droite grâce à l'utilisation d'une [[Lentille optique|lentille divergente]] en [[oculaire]]. Cette invention marque un tournant dans la vie de Galilée.+
-Le [[21 août]], venant à peine de terminer sa deuxième lunette (elle grossit huit ou neuf fois), il la présente au [[Sénat]] de [[Venise]]. La démonstration a lieu au sommet du [[Campanile]] de la [[place Saint-Marc]]. Les spectateurs sont enthousiasmés : sous leurs yeux, [[Murano]], située à 2,5 km semble être à 300 m seulement !+In 1612, having determined the orbital periods of Jupiter's satellites, Galileo proposed that with sufficiently accurate knowledge of their orbits one could use their positions as a universal clock, and this would make possible the determination of [[longitude]]. He worked on this problem from time to time during the remainder of his life; but the practical problems were severe. The method was first successfully applied by [[Giovanni Domenico Cassini]] in 1681 and was later used extensively for large land surveys; this method, for example, was used by [[Lewis and Clark]]. For sea navigation, where delicate telescopic observations were more difficult, the longitude problem eventually required development of a practical portable [[marine chronometer]], such as that of [[John Harrison]].
-Galilée offre son instrument et en lègue les droits à la [[République de Venise]], très intéressée par les applications militaires de l'objet. En récompense, Galilée est confirmé à vie à son poste de [[Padoue]] et ses [[gage]]s sont doublés. Il est enfin libéré des difficultés financières.+In his last year, when totally blind, he designed an [[escapement]] mechanism for a pendulum clock, a vectorial model of which may be seen [[Galileo's escapement|here]]. The first fully operational pendulum clock was made by [[Christiaan Huygens]] in the 1650s. Galilei created sketches of various inventions, such as a candle and mirror combination to reflect light throughout a building, an automatic tomato picker, a pocket comb that doubled as an eating utensil, and what appears to be a ballpoint pen.
-Il faut cependant signaler que, contrairement à ses allégations, Galilée ne maîtrisait pas la [[théorie]] [[optique]] et que les instruments fabriqués sont de qualité très variable. Certaines lunettes sont pratiquement inutilisables (en tout cas en observation [[astronomie|astronomique]]). En avril [[1610]], à [[Bologne]], par exemple, la démonstration de la lunette est désastreuse, ainsi que le rapporte Martin Horky dans une lettre à [[Johannes Kepler|Kepler]].+==Physics==
 +Galileo's theoretical and experimental work on the motions of bodies, along with the largely independent work of Kepler and [[René Descartes]], was a precursor of the [[classical mechanics]] developed by [[Isaac Newton|Sir Isaac Newton]]. He was a pioneer, at least in the European tradition, in performing rigorous experiments and insisting on a [[mathematics|mathematical]] description of the laws of nature.
-Galilée lui-même reconnaissait, en mars [[1610]], que, sur plus de 60 lunettes qu'il avait construites, quelques-unes seulement étaient adéquates. De nombreux témoignages, y compris celui de Kepler, confirment la médiocrité des premiers instruments.+A biography by Galileo's pupil [[Vincenzo Viviani]] stated that Galileo had dropped [[ball]]s of different [[mass]]es from the [[Leaning Tower of Pisa]] to demonstrate that their time of descent was independent of their mass (excluding the limited effect of air resistance). This was contrary to what Aristotle had taught: that heavy objects fall faster than lighter ones, in direct proportion to weight. While this story has been retold in popular accounts, it is generally accepted by historians that there is no account by Galileo himself of such an experiment, and that it was at most a [[thought experiment]] which did not actually take place.<ref>Rick Groleau. [http://www.pbs.org/wgbh/nova/galileo/experiments.html Galileo's Battle for the Heavens]. July 2002.</ref><ref>Phil Ball. [http://www.hindu.com/seta/2005/06/30/stories/2005063000351500.htm Science history: setting the record straight.] June 30, 2005.</ref> Moreover, [[Giambattista Benedetti]] had reached the same scientific conclusion years before, in 1553. However, Galileo did perform [[experiment]]s which proved the same thing by rolling balls down [[inclined plane]]s:<ref name="inclined planes">[[#Reference-Sharratt-1996|Sharratt (1996, pp.75,198)]]; [[#Reference-Drake-1978|Drake (1978, pp.85&ndash;90).]]</ref> falling or rolling objects (rolling is a slower version of falling, as long as the distribution of mass in the objects is the same) are [[acceleration|accelerated]] independently of their mass. Galileo was the first person to demonstrate this via experiment, but he was not&mdash;contrary to popular belief&mdash;the first to argue that it was true. [[John Philoponus]] had argued this [[Oxford Calculators|centuries earlier]].
-=== L'observation de la Lune ===+Galileo determined the correct mathematical law for acceleration: the total distance covered, starting from rest, is proportional to the square of the time (<math>d \propto t^2</math>). He expressed this law using geometrical constructions and mathematically-precise words, adhering to the standards of the day. (It remained for others to re-express the law in algebraic terms). He also concluded that objects ''retain their velocity'' unless a [[force]]&mdash;often [[friction]]&mdash;acts upon them, refuting the generally accepted Aristotelian hypothesis that objects "naturally" slow down and stop unless a force acts upon them (again this was not a new idea: [[Ibn al-Haytham]] had proposed it centuries earlier, as had [[Jean Buridan]], and according to [[Joseph Needham]], [[Mo Tzu]] had proposed it centuries before either of them, but this was the first time that it had been mathematically expressed). Galileo's Principle of Inertia stated: "A body moving on a level surface will continue in the same direction at constant speed unless disturbed." This principle was incorporated into [[Newton's laws of motion]] (first law).[[Image:Pisa.Duomo.dome.Riminaldi01.jpg|thumb|right|250px|Dome of the cathedral of Pisa with the "lamp of Galileo"]]
-[[Image:Galileo moon phases.jpg|thumb|220px|right|Phases de la [[lune]] dessinées par Galilée en [[1616]].]]+
-Pendant l'automne, Galilée continue à développer sa [[Lunette astronomique|lunette]]. En novembre, il fabrique un instrument qui grandit une vingtaine de fois. Il prend le temps de tourner sa lunette vers le ciel. Très vite, en observant les phases de la [[lune]], il découvre que cet [[astre]] n'est pas parfait comme le voulait la théorie aristotélicienne.+
-La physique aristotélicienne, qui faisait autorité à l'époque, distinguait deux mondes :+Galileo also noted that a [[pendulum]]'s swings always take the same amount of time, independently of the [[amplitude]]. The story goes that he came to this conclusion by watching the swings of the bronze chandelier in the cathedral of Pisa, using his pulse to time it. While Galileo believed this equality of period to be exact, it is only an approximation appropriate to small amplitudes. It is good enough to regulate a [[clock]], however, as Galileo may have been the first to realize. (See [[#Technology|Technology]] above)
-* le monde {{guil|sublunaire}} : comprenant la [[Terre]] et tout ce qui se trouve entre la Terre et la Lune ; dans ce monde tout est imparfait et changeant ;+
-* le monde {{guil|supralunaire}} : qui part de la Lune et s'étend au-delà. Dans cette zone, il n'existait plus que des formes géométriques parfaites (des [[sphère]]s) et des mouvements réguliers immuables (circulaires).+
-Galilée quant à lui, observa une zone transitoire entre l'[[ombre (lumière)|ombre]] et la [[lumière]], le ''[[terminateur]]'', qui n'était en rien régulière, ce qui par conséquent invalidait la théorie aristotélicienne. Il y a des montagnes sur la Lune ! Galilée estime même leur hauteur à 7 000 mètres, davantage que la plus haute montagne connue à l'époque. Il faut dire que les moyens techniques de l'époque ne permettaient pas de connaître l'altitude des montagnes terrestres sans fantaisie. Quand Galilée publie son ''[[Sidereus Nuncius]]'' (Messager Céleste), il pense que les montagnes lunaires sont plus élevées que celles de la Terre, bien qu'en réalité elles soient équivalentes.+In 1638 Galileo described an experimental method to measure the speed of light by arranging that two observers, each having lanterns equipped with shutters, observe each other's lanterns at some distance. The first observer opens the shutter of his lamp, and, the second, upon seeing the light, immediately opens the shutter of his own lantern. The time between the first observer's opening his shutter and seeing the light from the second observer's lamp indicates the time it takes light to travel back and forth between the two observers. Galileo reported that when he tried this at a distance of less than a mile, he was unable to determine whether or not the light appeared instantaneously.<ref>Galileo Galilei, ''Two New Sciences,'' (Madison: Univ. of Wisconsin Pr., 1974) p. 50.</ref> Sometime between Galileo's death and 1667, the members of the Florentine ''[[Accademia del Cimento]]'' repeated the experiment over a distance of about a mile and obtained a similarly inconclusive result.<ref>I. Bernard Cohen, "Roemer and the First Determination of the Velocity of Light (1676)," ''Isis'', 31 (1940): 327–379, see pp. 332–333</ref>
-=== La tête dans les étoiles ===+Galileo is lesser known for, yet still credited with, being one of the first to understand sound frequency. By scraping a chisel at different speeds, he linked the pitch of the sound produced to the spacing of the chisel's skips, a measure of frequency.
-[[Image:Galileo.script.arp.600pix.jpg.jpg|thumb|220px|right|Notes manuscrites historiques ou Galilée décrit pour la première fois sa découverte des lunes de [[Jupiter (planète)|Jupiter]] en [[1610]].]]+
-En quelques semaines, il découvre la nature de la [[Galaxie (Voie lactée)|Voie lactée]], dénombre les étoiles de la [[Orion (constellation)|constellation d'Orion]] et constate que certaines [[étoile]]s visibles à l'œil nu sont, en fait, des [[Amas stellaire|amas d'étoiles]]. Il étudie également les [[soleil|tâches solaires]].+
-Le [[7 janvier]] [[1610]], Galilée fait une découverte capitale : il remarque 3 petites [[étoile]]s à côté de [[Jupiter (planète)|Jupiter]]. Après quelques nuits d'observation, il découvre qu'elles sont quatre et accompagnent la [[planète]]. Ce sont les [[Satellite naturel|satellites]] de [[Jupiter (planète)|Jupiter]], qu'il nomme les étoiles Médicées. Ils seront nommés [[Callisto (lune)|Callisto]], [[Europe (lune)|Europe]], [[Ganymède (lune)|Ganymède]] et [[Io (lune)|Io]] (aujourd'hui baptisés ''[[lune galiléenne|lunes galiléennes]]'') par [[Simon Marius]], qui en revendiquera également la découverte plusieurs années après. Le [[4 mars]] [[1610]], il publie à [[Florence]] ses découvertes dans ''[[Le Messager des étoiles]]'' (''[[Sidereus Nuncius]]''), résultat de ses premières observations stellaires.+In his 1632 [[Dialogue Concerning the Two Chief World Systems|Dialogue]] Galileo presented a physical theory to account for [[tide]]s, based on the motion of the Earth. If correct, this would have been a strong argument for the reality of the Earth's motion. In fact, the original title for the book described it as a dialogue on the tides; the reference to tides was removed by order of the Inquisition. His theory gave the first insight into the importance of the shapes of ocean basins in the size and timing of tides; he correctly accounted, for instance, for the negligible tides halfway along the [[Adriatic Sea]] compared to those at the ends. As a general account of the cause of tides, however, his theory was a failure. Kepler and others correctly associated the Moon with an influence over the tides, based on empirical data; a proper physical theory of the tides, however, was not available until Newton.
-Pour lui, [[Jupiter (planète)|Jupiter]] et ses satellites sont un modèle du [[système solaire]]. Grâce à eux, il pense pouvoir démontrer que les [[Orbite|orbe]]s de [[cristal]] d’[[Aristote]] n'existent pas et que tous les corps célestes ne tournent pas autour de la [[Terre]]. C'est un coup très rude porté aux aristotéliciens. Il corrige aussi certains coperniciens qui prétendent que tous les corps célestes tournent autour du [[Soleil]] (sauf la [[Lune]]).+Galileo also put forward [[Galilean invariance|the basic principle of relativity]], that the laws of physics are the same in any system that is moving at a constant speed in a straight line, regardless of its particular speed or direction. Hence, there is no absolute motion or absolute rest. This principle provided the basic framework for Newton's laws of motion and is central to [[Albert Einstein|Einstein]]'s [[special theory of relativity]].
-Afin de se protéger du besoin et sans doute désireux de retourner à [[Florence]], Galilée rebaptise les satellites de [[Jupiter (planète)|Jupiter]] qui sont pour quelque temps les « [[astre]]s [[Maison de Médicis|médicéens]] », en l'honneur de [[Cosme II de Médicis]], son ancien élève et [[Liste des grands-ducs de Toscane|grand-duc de Toscane]]. Galilée a hésité entre ''Cosmica sidera'' et ''Medicea sidera''. Le jeu de mots « Cosmica = Cosme » est évidemment volontaire et c'est seulement après la première impression qu'il retient la deuxième dénomination.+==Mathematics==
 +While Galileo's application of mathematics to experimental physics was innovative, his mathematical methods were the standard ones of the day. The analysis and proofs relied heavily on the [[Eudoxus of Cnidus|Eudoxian]] theory of proportion, as set forth in the fifth book of [[Euclid's Elements]]. This theory had become available only a century before, thanks to accurate translations by [[Niccolò Tartaglia|Tartaglia]] and others; but by the end of Galileo's life it was being superseded by the algebraic methods of [[René Descartes|Descartes]].
-Le [[10 avril]], il fait observer ces astres à la cour de [[Toscane]]. C'est le triomphe. Le même mois, il donne trois cours sur le sujet à [[Padoue]]. Toujours en avril, [[Johannes Kepler]] offre son soutien à Galilée. L'[[astronome]] [[Allemagne|allemand]] ne confirme pas vraiment cette découverte puisqu'il n'a pas encore eu accès à la lunette, il offre seulement une dissertation-discussion (enthousiaste pour son aspect copernicien) sur la pertinence du petit ouvrage de Galilée. C'est la Dissertatio cum Nuncio Sidereo où même la question de l'impact sur les fondements de l'astrologie est abordée (ces nouvelles planètes invalident-elles l'astrologie de la tradition ? Question remise au goût du jour depuis 2006 avec l'actualité des planétoïdes plutoniens et le déclassement de Pluton). En septembre 1610, Kepler publie sa Narratio, un compte-rendu court et précis de l'observation des compagnons de [[Jupiter (planète)|Jupiter]] : c'est là qu'il crée le néologisme "[[Satellite naturel|satellite]]" (garde du corps en latin). En effet, si l'on ajoutait des "planètes" au système solaire, son système des 5 solides (1596, Mysterium Cosmographicum) serait invalidé...<br/>+Galileo produced one piece of original and even prophetic work in mathematics: [[Galileo's paradox]], which shows that there are as many perfect squares as there are whole numbers, even though most numbers are not perfect squares. Such seeming contradictions were brought under control 250 years later in the work of [[Georg Cantor]].
-A noter que Galilée ne lui fit jamais parvenir une seule lunette, et ce malgré son soutien officiel en tant qu'Astronome Impérial. L'observation des satellites de [[Jupiter (planète)|Jupiter]] n'a pu avoir lieu que par l'emprunt d'une lunette (qu'il eut à disposition une ou deux nuits seulement). Galilée, en effet, s'est toujours méfié des écrits keplériens faisant une part belle à l'astrologie, à l'Écriture Sainte ([[Kepler]] est protestant et théologien de formation) ou, à partir de 1609, à des ellipses et des forces dans le système solaire. Galilée qualifiera même de puérile l'idée d'une attraction mutuelle entre les eaux des mers et la Lune... rappelant trop la symbolique astrologique.+
-=== Observations à Florence, présentation à Rome ===+==Church controversy==
 +{{main|Galileo affair}}
 +[[Image:Galileo facing the Roman Inquisition.jpg|thumb|250px|Cristiano Banti's 1857 painting ''Galileo facing the Roman Inquisition'']]
-Le [[10 juillet]] [[1610]], Galilée quitte [[Venise]] pour [[Florence]].+Western Christian biblical references "Psalm 93:1", "Psalm 96:10", and "1 Chronicles 16:30" include text stating that "the world is firmly established, it cannot be moved." In the same tradition, "Psalm 104:5" says, "[the LORD] set the earth on its foundations; it can never be moved." Further, "Ecclesiastes 1:5" states that "And the sun rises and sets and returns to its place, etc."<ref name="Bellarmine quote">[[#Reference-Brodrick-1965| Brodrick (1965, c1964, p.95)]] quoting Cardinal Bellarmine's [[letter to Foscarini]], dated April 12, 1615. Translated from [[#Reference-Favaro-1890| Favaro ]] [http://moro.imss.fi.it/lettura/LetturaWEB.DLL?VOL=12&VOLPAG=171 (1902, 12:171&ndash;172)] {{it icon}}. </ref>
-Malgré l'avis de ses amis [[Fra Paolo Sarpi]] et [[Nicolò Sagredo]], qui craignent que sa liberté ne soit bridée, il a, en effet, accepté le poste de ''Premier Mathématicien'' de l'[[Université de Pise]] (sans charge de cours, ni obligation de résidence) et celui de ''Premier Mathématicien'' et ''Premier Philosophe'' du [[Liste des grands-ducs de Toscane|grand-duc de Toscane]].+Galileo defended [[heliocentrism]], and claimed it was not contrary to those Scripture passages. He took [[Augustine of Hippo|Augustine's]] position on Scripture: not to take every passage literally, particularly when the scripture in question is a book of poetry and songs, not a book of instructions or history. The writers of the Scripture wrote from the perspective of the terrestrial world, and from that vantage point the sun does rise and set. In fact, it is the earth's rotation which gives the impression of the sun in motion across the sky.
-Le [[25 juillet]] [[1610]], Galilée tourne sa [[lunette astronomique]] vers [[Saturne (planète)|Saturne]] et découvre son étrange apparence : oOo (''les '''oreilles''' de Saturne'', dit-on alors). Mais c'est seulement 50 ans plus tard et avec des instruments plus puissants que [[Christiaan Huygens]] comprendra la nature des [[anneaux de Saturne]]. <br/>+By 1616 the attacks on Galileo had reached a head, and he went to [[Rome]] to try to persuade the Church authorities not to ban his ideas. In the end, [[Cardinal Bellarmine]], acting on directives from the Inquisition, delivered him an order not to "hold or defend" the idea that the Earth moves and the Sun stands still at the centre. The decree did not prevent Galileo from discussing heliocentrism hypothetically. For the next several years Galileo stayed well away from the controversy. He revived his project of writing a book on the subject, encouraged by the election of [[Cardinal Barberini]] as [[Pope Urban VIII]] in 1623. Barberini was a friend and admirer of Galileo, and had opposed the condemnation of Galileo in 1616. The book, ''Dialogue Concerning the Two Chief World Systems'', was published in 1632, with formal authorization from the [[Inquisition]] and papal permission.
-Galilée protégera la paternité de sa découverte en incluant dans ses écrits une phrase codée, une devinette pour lui servir de témoin : <small>SMAISMRMILMEPOETALEVNIPVENGTTAVIRAS</small> qui contient la phrase latine : ''Altissimusm Planetam tergeminum observavi'' (J'ai découvert que la planète plus haut placée était triple), énigme qu'il dévoilera plus tard.+
-Le mois suivant, Galilée trouve une astuce pour observer le [[Soleil]] à la lunette et découvre les [[Cycle solaire|taches solaires]]. Il en donne une explication satisfaisante.+Pope Urban VIII personally asked Galileo to give arguments for and against heliocentrism in the book, and to be careful not to advocate heliocentrism. He made another request, that his own views on the matter be included in Galileo's book. Only the latter of those requests was fulfilled by Galileo. Whether unknowingly or deliberate, Simplicius, the defender of the Aristotelian Geocentric view in ''Dialogue Concerning the Two Chief World Systems'', was often caught in his own errors and sometimes came across as a fool. This fact made ''Dialogue Concerning the Two Chief World Systems'' appear as an advocacy book; an attack on Aristotelian geocentrism and defense of the Copernican theory. To add insult to injury, Galileo put the words of Pope Urban VIII into the mouth of Simplicius. Most historians agree Galileo did not act out of malice and felt blindsided by the reaction to his book. However, the Pope did not take the public ridicule lightly, nor the blatant bias. Galileo had alienated one of his biggest and most powerful supporters, the Pope, and was called to Rome to defend his writings.
-En septembre [[1610]], poursuivant ses observations, il découvre les phases de [[Vénus (planète)|Vénus]]. Pour lui, c'est une nouvelle preuve de la vérité du système copernicien, car s'il est facile d'interpréter ce phénomène grâce à l'hypothèse [[Héliocentrisme|héliocentrique]], il est beaucoup plus difficile de le faire à l'aide de l'hypothèse [[Géocentrisme|géocentrique]].+With the loss of many of his defenders in Rome because of ''Dialogue Concerning the Two Chief World Systems'', Galileo was ordered to stand trial on suspicion of heresy in 1633. The sentence of the Inquisition was in three essential parts:
 +* Galileo was required to [[recant]] his heliocentric ideas; the idea that the Sun is stationary was condemned as "formally heretical." However, while there is no doubt that Pope Urban VIII and the vast majority of Church officials did not believe in heliocentrism, heliocentrism was never formally or officially condemned by the Catholic Church, except insofar as it held (for instance, in the formal condemnation of Galileo) that "The proposition that the sun is in the center of the world and immovable from its place is absurd, philosophically false, and formally heretical; because it is expressly contrary to Holy Scriptures", and the converse as to the Sun's not revolving around the Earth.<ref>{{cite web |url=http://www.fordham.edu/halsall/mod/1630galileo.html |title=The Crime of Galileo: Indictment and Abjuration of 1633 |publisher=Modern History Sourcebook |accessdate=2007-07-24}}</ref>
 +* He was ordered imprisoned; the sentence was later commuted to house arrest.
 +* His offending ''Dialogue'' was banned; and in an action not announced at the trial, publication of any of his works was forbidden, including any he might write in the future.<ref name="publication-ban">[[#Reference-Drake-1978| Drake (1978, p.367),]] [[#Reference-Sharratt-1996| Sharratt (1996, p.184),]] [[#Reference-Favaro-1890| Favaro ]] [http://moro.imss.fi.it/lettura/LetturaWEB.DLL?VOL=16&VOLPAG=209 (1905, 16:209,] [http://moro.imss.fi.it/lettura/LetturaWEB.DLL?VOL=16&VOLPAG=230 230)]{{it icon}}. See [[Galileo affair# note-publication-ban| Galileo affair]] for further details.</ref>
-Il est invité le [[29 mars]] [[1611]] par le [[cardinal (religion)|cardinal]] [[Urbain VIII|Maffeo Barberini]] (futur [[Urbain VIII]]) à présenter ses découvertes au [[Collège pontifical]] de [[Rome]] et à la jeune [[Académie des Lynx]]. Galilée reste dans la capitale pontificale un mois complet, durant lequel il reçoit tous les honneurs. L'Académie des Lynx notamment, lui réserve un accueil enthousiaste et l'admet en tant que 6{{e}} membre. Dorénavant, le lynx de l'Académie ornera le [[frontispice]] de toutes les publications de Galilée.+[[Image:Tomb of Galileo Galilei.JPG|thumb|250px|Tomb of Galileo Galilei, [[Basilica di Santa Croce di Firenze|Santa Croce]]]]
 +After a period with the friendly [[Ascanio Piccolomini]] (the Archbishop of [[Siena]]), Galileo was allowed to return to his villa at [[Arcetri]] near Florence, where he spent the remainder of his life under house arrest, and where he later became blind. It was while Galileo was under house arrest that he dedicated his time to one of his finest works, [[Two New Sciences]]. Here he summarized work he had done some forty years earlier, on the two sciences now called [[kinematics]] and [[strength of materials]]. This book has received high praise from both [[Sir Isaac Newton]] and [[Albert Einstein]]. As a result of this work, Galileo is often called, the "father of modern physics."
-Le [[24 avril]] [[1611]], le Collège romain, composé de [[jésuite]]s et dont [[Christophorus Clavius]] est le membre le plus éminent, confirme au [[cardinal (religion)|cardinal]] [[Robert Bellarmin|Bellarmin]] que les observations de Galilée sont exactes. Cependant, les savants se gardent bien de confirmer ou d'infirmer les conclusions que le Florentin en a tirées.+Galileo died on [[January 8]], [[1642]]. The Grand Duke of Tuscany, [[Ferdinando II de' Medici, Grand Duke of Tuscany|Ferdinando II]], wished to bury him in the main body of the [[Basilica di Santa Croce di Firenze|Basilica of Santa Croce]], next to the tombs of his father and other ancestors, and to erect a marble mausoleum in his honour.<ref name=funeral>[[#Reference-Shea&Artigas-2003| Shea & Artigas (2003, p.199)]]; [[#Reference-Sobel-2000|Sobel (2000, p.378)]].</ref> These plans were scrapped, however, after Pope Urban VIII and his nephew, Cardinal Francesco Barberini, protested.<ref name="funeral protests"> [[#Reference-Shea&Artigas-2003| Shea & Artigas (2003, p.199)]]; [[#Reference-Sobel-2000|Sobel (2000, p.378)]]; [[#Reference-Sharratt-1996|Sharratt (1996, p.207)]]; [[#Reference-Favaro-1890| Favaro ]] [http://moro.imss.fi.it/lettura/LetturaWEB.DLL?VOL=18&VOLPAG=378 (1906,18:378&ndash;80)] {{it icon}}.</ref> He was instead buried in a small room next to the novices' chapel at the end of a corridor from the southern transept of the basilica to the sacristy.<ref name="burial spot">[[#Reference-Shea&Artigas-2003| Shea & Artigas (2003, p.199)]]; [[#Reference-Sobel-2000|Sobel (2000, p.380)]].</ref> He was reburied in the main body of the basilica in 1737 after a monument had been erected there in his honour.<ref name="reburial spot">[[#Reference-Shea&Artigas-2003| Shea & Artigas (2003, p.200)]]; [[#Reference-Sobel-2000|Sobel (2000, p.380&ndash;384)]].</ref>
-Galilée retourne à [[Florence]] le [[4 juin]].+The Inquisition's ban on reprinting Galileo's works was lifted in 1718 when permission was granted to publish an edition of his works (excluding the condemned ''Dialogue'') in Florence.<ref name="incomplete works">[[#Reference-Heilbron-2005| Heilbron (2005, p.299)]].</ref> In 1741 [[Pope Benedict XIV]] authorized the publication of an edition of Galileo's complete scientific works<ref name="complete works 1">Two of his non-scientific works, the letters to Castelli and the Grand Duchess Christina, were explicitly not allowed to be included [[#Reference-Coyne-2005| (Coyne 2005, p.347)]].</ref> which included a mildly censored version of the ''Dialogue''.<ref name="complete works 2">[[#Reference-Heilbron-2005| Heilbron (2005, p.303&ndash;04)]]; [[#Reference-Coyne-2005| Coyne (2005, p.347)]]. The uncensored version of the ''Dialogue'' remained on the Index of prohibited books, however [[#Reference-Heilbron-2005| (Heilbron 2005, p.279)]].</ref> In 1758 the general prohibition against works advocating heliocentrism was removed from the [[Index Librorum Prohibitorum|Index of prohibited books]], although the specific ban on uncensored versions of the ''Dialogue'' and Copernicus's ''De Revolutionibus'' remained.<ref name="ban not lifted">[[#Reference-Heilbron-2005| Heilbron (2005, p.307)]]; [[#Reference-Coyne-2005| Coyne (2005, p.347)]]</ref> All traces of official opposition to heliocentrism by the Church disappeared in 1835 when these works were finally dropped from the Index.<ref name="ban lifted">[[#Reference-McMullin-2005| McMullin (2005, p.6)]]; [[#Reference-Coyne-2005| Coyne (2005, p.346)]]. In fact, the Church's opposition had effectively ended in 1820 when a Catholic canon, Giuseppe Settele, was given permission to publish a work which treated heliocentism as a physical fact rather than a mathematical fiction. The 1835 edition of the Index was the first to be issued after that year.</ref>
-== Galilée attaqué et condamné par les autorités ==+On [[31 October]] [[1992]], [[Pope John Paul II]] expressed regret for how the Galileo affair was handled, as the result of a study conducted by the [[Pontifical Council for Culture]].<ref> [http://www.newscientist.com/article/mg13618460.600-vatican-admits-galileo-was-right-.html Vatican admits Galileo was right.] ''New Scientist'' [[07 November]] [[1992]]. Retrieved on [[09 August]] [[2007]].</ref>
-=== L'opposition s'organise ===+
-[[Image:Costa San Giorgio, casa di Galileo.JPG|thumb|220px|right|Maison de Galilée ''Costa San Giorgio'' à [[Florence]].]]+
-[[Image:PIA01299.jpg|right|thumb|Les quatres [[Lune galiléenne|lunes galiléennes]] de [[Jupiter (planète)|Jupiter]] découvertes par Galilée en [[1610]] : [[Callisto (lune)|Callisto]], [[Ganymède (lune)|Ganymède]], [[Europe (lune)|Europe]] et [[Io (lune)|Io]]]]+
-Galilée semble voler de succès en succès et convaincre tout le monde. Pourtant, les partisans de la théorie [[géocentrisme|géocentrique]] selon [[Aristote]] sont devenus ses ennemis acharnés et les attaques contre lui ont commencé dès la parution du ''Sidereus Nuncius''. Ils ne peuvent pas se permettre de perdre la face et ne veulent pas voir leur science remise en question.+
-De plus, les méthodes de Galilée, basées sur l'[[observation]] et l'[[expérience]] plutôt que sur l'[[autorité]] des partisans des théories géocentriques (qui s'appuyaient sur le prestige d'[[Aristote]]), sont en opposition complète avec les leurs, à tel point que Galilée refuse d'être comparé à eux.+==Galileo's writings==
 +[[Image:Galileo Galilei01.jpg|thumb|right|160px|Statue outside the [[Uffizi]], Florence]]
 +*''[[The Little Balance]]'' (1586)
 +*''[[Sidereus Nuncius|The Starry Messenger]]'' (1610; in [[Latin]], ''[[Sidereus Nuncius]]'')
 +*''[[Letters on Sunspots]]'' (1613)
 +*''[[Letter to Grand Duchess Christina]]'' (1615)
 +*''[[Discorso Delle Comete]] ''(1619; in Italian)''
 +*''[[The Assayer]]'' (1623; in Italian, ''Il Saggiatore'')
 +*''[[Dialogue Concerning the Two Chief World Systems]]'' (1632, in Italian ''Dialogo dei due massimi sistemi del mondo'')
 +*''[[Two New Sciences]]'' (1638; in [[Italian Language|Italian]], ''Discorsi e Dimostrazioni Matematiche, intorno a due nuove scienze'')
 +<div style="clear:both;"></div> <!-- force notes down so they'll use full horizontal space, instead of being impacted by the statue image. -->
-D'abord, ce ne sont que des escarmouches. Mais [[Nicolò Sagredo]] écrit tout de même à Galilée, fraîchement arrivé à [[Florence]] : 
-{{début_citation}}La puissance et la générosité de votre prince (le grand-duc de Toscane) permettent d'espérer qu'il saura reconnaître votre dévouement et votre mérite ; mais dans les mers agitées des cours, qui peut éviter d'être, je ne dirai pas coulé, mais au moins durement secoué par les rafales furieuses de la jalousie ?{{fin_citation}}+==Legacy==
 +*The four large moons of [[Jupiter]] discovered by Galileo ([[Io]], [[Europa]], [[Ganymede]] and [[Callisto]]) are often referred to as the 'Galilean moons'.
 +*The [[Galileo (spacecraft)|Galileo spacecraft]] was the first spacecraft to enter orbit around Jupiter, where it investigated the planet and its moons for years.
 +*[[Galileo satellite system|Galileo]] is also the name of a proposed, European [[Global Navigation Satellite System|satellite navigation]] system.
 +*A [[Transformation (geometry)|transformation]] between [[inertial system]]s in [[classical mechanics]] is called a [[Galilean transformation]].
 +*The [[gal]], sometimes called galileo, (symbol Gal) is a non-[[SI]] unit of [[acceleration]] named after Galileo. The gal is defined as 1 centimeter per second squared (1 cm/s²).
-La première flèche vient de Martin Horky, disciple du professeur [[Giovanni Antonio Magini]] et ennemi de Galilée. Cet assistant publie en juin [[1610]], sans consulter son maître, un [[pamphlet]] contre le ''Sidereus Nuncius''. Hormis les attaques personnelles, son argument principal est le suivant :+==Galileo in popular culture==
 +*There is a play called [[Life of Galileo]] by the German dramatist [[Bertolt Brecht]].
 +*Galileo is mentioned in [[Queen (band)|Queen]]'s song, [[Bohemian Rhapsody]].
 +*Galileo was a title of the songs by [[The Indigo Girls]] and [[Amy Grant]].
-{{début_citation}}Les [[astrologue]]s ont fait leurs [[horoscope]]s en tenant compte de tout ce qui bougeait dans les cieux. Donc les astres médicéens ne servent à rien et, [[Dieu]] ne créant pas de choses inutiles, ces astres ne peuvent pas exister.{{fin_citation}}+==Notes==
 +{{reflist|2}}
-Il est ridiculisé par les partisans de Galilée, qui répondent que ces astres servent à une chose : faire enrager Horky. Devenu la risée de toute l'université, Horky est finalement chassé par son maître : [[Giovanni Antonio Magini]] ne tolère pas un échec aussi cuisant. Au mois d'août, un certain Sizzi tente le même genre d'attaque avec le même genre d'arguments, sans plus de succès.+==References==
 +*Allan-Olney, Mary. [http://books.google.com/books?vid=OCLC17550160&id=zWcSAAAAIAAJ&printsec=titlepage&dq=galileo ''The private Life of Galileo: Compiled primarily from his correspondence and that of his eldest daughter, Sister Maria Celeste''], (nun in the Franciscan convent of St. Matthew, in Arcetri), 1870, Boston : Nichols and Noyes. - [[Google Books]]: [http://www.archive.org/details/privatelifeofgal00galirich The private Life of Galileo] - [[The Internet Archive]]
 +*Biagioli, Mario (1993). ''Galileo, Courtier: The Practice of Science in the Culture of Absolutism''. Chicago: University of Chicago Press.
 +*Consolmagno, Guy; Schaefer, Marta (1994). ''Worlds Apart, A Textbook in Planetary Science''. Englewood, New Jersey: Prentice-Hall, Inc. ISBN 0-13-964131-9
 +*{{cite book | title= Galileo : the man, his work, his misfortunes
 + | author= Brodrick, James, S.J.
 + | publisher= G. Chapman
 + | year= 1965, c1964
 + | location= London
 + | isbn=
 + | ref=Reference-Brodrick-1965}}
 +*{{cite book | title= The Church's Most Recent Attempt to Dispel the Galileo Myth
 + | author= Coyne, George V., S.J.
 + | others= In [[#Reference-McMullin-2005|McMullin (2005, pp.340&ndash;359)]]
 + | year= 2005
 + | ref=Reference-Coyne-2005}}
 +*Drake, Stillman (1953), trans. ''Dialogue Concerning the Two Chief World Systems''. Berkeley: University of California Press.
 +*{{wikicite | id=Drake-1957| reference = Drake, Stillman (1957). ''Discoveries and Opinions of Galileo''. New York: Doubleday & Company. ISBN 0-385-09239-3}}
 +*{{cite book | title= Introduction to the Controversy on the Comets of 1618
 + | author= Drake, Stillman
 + | others= In [[#Reference-Drake&O'Malley-1960|Drake & O'Malley (1960, pp.vii&ndash;xxv)]]
 + | year= 1960
 + | ref=Reference-Drake-1960}}
 +*Drake, Stillman (1973). "Galileo's Discovery of the Law of Free Fall". ''Scientific American'' v. 228, #5, pp. 84–92.
 +*{{wikicite | id= Drake-1978 | reference= Drake, Stillman (1978). ''Galileo At Work''. Chicago: University of Chicago Press. ISBN 0-226-16226-5}}
 +*{{cite book | title= The Controversy on the Comets of 1618
 + | author= Drake, Stillman, and O'Malley, C.D. (translators)
 + | publisher= University of Philadelphia Press
 + | year= 1960
 + | location= Philadelphia, PA
 + | ref=Reference-Drake&O'Malley-1960}}
 +*Einstein, Albert (1952). Foreword to (Drake, 1953)
 +*{{cite book | title= Ideas and Opinions
 + | author= Einstein, Albert
 + | others= translated by Sonja Bargmann
 + | publisher= Crown Publishers
 + | year= 1954
 + | authorlink= Albert Einstein
 + | location= London
 + | isbn= 0-285-64724-5
 + | ref=Reference-Einstein-1954}}
 +*Fantoli, Annibale (2003). ''Galileo &mdash; For Copernicanism and the Church'', third English edition. Vatican Observatory Publications. ISBN 88-209-7427-4
 +*{{wikicite | id= Favaro-1890 | reference= Favaro, Antonio (1890&ndash;1909), ed.[http://www.domusgalilaeana.it/Exhibition/Protagonist/Favaro.htm]. ''[http://moro.imss.fi.it/lettura/LetturaWEB.DLL?AZIONE=CATALOGO Le Opere di Galileo Galilei, Edizione Nazionale]'' {{it icon}}. (''The Works of Galileo Galilei, National Edition'', 20 vols.), [[Florence]]: Barbera, 1890–1909; reprinted 1929–1939 and 1964–1966. ISBN 88-09-20881-1.}} Searchable online copy from the [http://www.imss.fi.it/istituto/index.html Institute and Museum of the History of Science], Florence . Brief overview of "''Le Opere''" @ Finns Fine Books, [http://www.finns-books.com/fgalileo.htm] and here [http://www.pacifier.com/~tpope/Additional_Info.htm#National_Edition]
 +*Fillmore, Charles (1931, 17th printing July 2004). ''Metaphysical Bible Dictionary''. Unity Village, Missouri: Unity House. ISBN 0-87159-067-0
 +*Finocchiaro, Maurice A. (1989). ''The Galileo Affair: A Documentary History''. Berkeley: University of California Press. ISBN 0-520-06662-6
 +*<cite id="Reference-Finocchiaro-2007"></cite>{{Citation
 + | last = Finocchiaro
 + | first = Maurice A.
 + | title = Book Review&mdash;The Person of the Millenium: The Unique Impact of Galileo on World History
 + | journal =The Historian
 + | volume = 69
 + | issue = 3
 + | pages = 601&ndash;602
 + | date = Fall 2007}}
 +*{{cite book | title= The Assayer
 + | author= Galilei, Galileo
 + | others =translated by Stillman Drake. In [[#Reference-Drake&O'Malley-1960|Drake & O'Malley (1960, pp.151&ndash;336)]]
 + | year= 1960
 + | origyear= 1623
 + | ref=Reference-Galileo-1960}}
 +* {{wikicite | id= Galileo-1954 | reference= Galilei, Galileo [1638,1914] (1954), Henry Crew and Alfonso de Salvio, translators, ''[http://oll.libertyfund.org/index.php?option=com_staticxt&staticfile=show.php%3Ftitle=753&Itemid=99999999 Dialogues Concerning Two New Sciences]'', Dover Publications Inc., New York, NY. ISBN 486-60099-8}}
 +*{{cite book | title= Discourse on the Coments
 + | author= Galilei, Galileo, and Guiducci, Mario
 + | others =translated by Stillman Drake. In [[#Reference-Drake&O'Malley-1960|Drake & O'Malley (1960, pp.21&ndash;65)]]
 + | year= 1960
 + | origyear= 1619
 + | ref=Reference-Galileo&Guiducci-1960}}
 +*Gebler, Karl von. ''[http://books.google.com/books?vid=OCLC02415342&id=FheRZAirWvQC&pg=PR3&dq=%22Galileo+Galilei+and+the+Roman+Curia%22 Galileo Galilei and the Roman Curia : from authentic sources]'', London, C.K. Paul & co., 1879; Merrick, N.Y. : Richwood Pub. Co., 1977. - [[Google Books]] ISBN 0-915172-11-9
 +*Geymonat, Ludovico (1965), ''Galileo Galilei, A biography and inquiry into his philosophy and science'', translation of the 1957 Italian edition, with notes and appendix by Stillman Drake, McGraw-Hill
 +*{{cite book | title= On the Three Comets of the Year MDCXIII
 + | author= Grassi, Horatio
 + | others =translated by C.D. O'Malley. In [[#Reference-Drake&O'Malley-1960|Drake & O'Malley (1960, pp.3&ndash;19)]]
 + | year= 1960a
 + | origyear= 1619
 + | ref=Reference-Grassi-1960a}}
 +*{{cite book | title= The Astronomical and Philosophical Balance
 + | author= Grassi, Horatio
 + | others =translated by C.D. O'Malley. In [[#Reference-Drake&O'Malley-1960|Drake & O'Malley (1960, pp.67&ndash;132)]]
 + | year= 1960b
 + | origyear= 1619
 + | ref=Reference-Grassi-1960b}}
 +*Grisar, Hartmann, S.J., Professor of Church history at the University of Innsbruck (1882). [http://books.google.com/books?vid=ISBN0790562294&id=aqMBAAAAQAAJ&printsec=titlepage&dq=%22hartmann+grisar%22 ''Historisch theologische Untersuchungen über die Urtheile Römischen Congegationen im Galileiprocess (Historico-theological Discussions concerning the Decisions of the Roman Congregations in the case of Galileo)''], Regensburg: Pustet. - [[Google Books]] ISBN 0-7905-6229-4. [http://isbndb.com/d/book/galileistudien.html (LCC # QB36 - ''microfiche'')] [http://books.google.com/books?id=aqMBAAAAQAAJ&q=%22hartmann+grisar%22+%22Historisch+theologische%22&dq=%22hartmann+grisar%22+%22Historisch+theologische%22&ei=GOsIR_m6K4yKpwKygp3BDg&pgis=1 Reviewed here (1883), pp.211–213]
 +*{{cite book | title= A Brief History of Time
 + | author= Hawking, Stephen
 + | publisher= Bantam Books
 + | year= 1988
 + | authorlink= Stephen Hawking
 + | location= New York, NY
 + | isbn= 0-553-34614-8
 + | ref=Reference-Hawking-1988}}
 +*{{cite book | title= Censorship of Astronomy in Italy after Galileo
 + | author= Heilbron, John L.
 + | others= In [[#Reference-McMullin-2005|McMullin (2005, pp.279&ndash;322)]]
 + | year= 2005
 + | ref=Reference-Heilbron-2005}}
 +*Hellman, Hal (1988). ''Great Feuds in Science. Ten of the Liveliest Disputes Ever''. New York: Wiley
 +*{{cite book | title= The Refusal to Accommodate. Jesuit Exegetes and the Copernican System
 + | author= Kelter, Irving A.
 + | others= In [[#Reference-McMullin-2005|McMullin (2005, pp.38&ndash;53)]]
 + | year= 2005
 + | ref=Reference-Kelter-2005}}
 +*[[Arthur Koestler|Koestler, Arthur]]. ''The Sleepwalkers: A History of Man's Changing Vision of the Universe'' 1958, Penguin (Non-Classics); Reprint edition (June 5, 1990). ISBN 0-14-019246-8
 +*Lattis, James M. (1994). ''Between Copernicus and Galileo: Christopher Clavius and the Collapse of Ptolemaic Cosmology'', Chicago: the University of Chicago Press
 +*Langford, Jerome, ''Galileo, Science and the Church'', third edition, St. Augustine's Press, 1998. ISBN 1-890318-25-6
 +*Lessl, Thomas, "[http://www.catholiceducation.org/articles/apologetics/ap0138.html The Galileo Legend]". ''New Oxford Review'', 27–33 (June 2000).
 +*{{cite book | title= The Church and Galileo
 + | author= McMullin, Ernan, ed.
 + | publisher= University of Notre Dame Press
 + | year= 2005
 + | location= Notre Dame, IN
 + | isbn= 0-268-03483-4
 + | ref=Reference-McMullin-2005}}
 +*{{cite book | title= The Church's Ban on Copernicanism, 1616
 + | author= McMullin, Ernan,
 + | others= In [[#Reference-McMullin-2005|McMullin (2005, pp.150&ndash;190)]]
 + | year= 2005a
 + | ref=Reference-McMullin-2005a}}
 +*Naylor, Ronald H. (1990). "Galileo's Method of Analysis and Synthesis," ''Isis'', 81: 695–707
 +*Newall, Paul (2004). [http://www.galilean-library.org/hps.html "The Galileo Affair"]
 +*Remmert, Volker R. (2005). ''Galileo, God, and Mathematics''. In: Bergmans, Luc/Koetsier, Teun (eds.): ''Mathematics and the Divine. A Historical Study'', Amsterdam et al., 347–360
 +*Settle, Thomas B. (1961). "An Experiment in the History of Science". ''Science'', 133:19–23
 +*{{cite book | title= Galileo in Rome: The Rise and Fall of a Troublesome Genius
 + | author= Shea, William R. and Arigas, Mario
 + | publisher= Oxford University Press
 + | year= 2003
 + | location= Oxford
 + | isbn= 0-19-516598-5
 + | ref= Reference-Shea&Artigas-2003}}
 +*{{wikicite | id= Sharratt-1996| reference= Sharratt, Michael (1996), ''Galileo: Decisive Innovator.'' Cambridge University Press, Cambridge. ISBN 0-521-56671-1}}
 +*{{cite book | title= Galileo's Daughter
 + | author= Sobel, Dava
 + | publisher= Fourth Estate
 + | year= 2000
 + | location= London
 + | origyear= 1999
 + | isbn= 1-85702-712-4
 + | ref= Reference-Sobel-2000}}
 +*Wallace, William A. (1984) ''Galileo and His Sources: The Heritage of the Collegio Romano in Galileo's Science,'' (Princeton: Princeton Univ. Pr.), ISBN 0-691-08355-X
 +*White, Andrew Dickson (1898). [http://www.santafe.edu/~shalizi/White/ ''A History of the Warfare of Science with Theology in Christendom'']. New York 1898.
 +*White, Michael. (2007). ''Galileo: Antichrist: A Biography.'' Weidenfeld & Nicolson:London, ISBN 978-0-297-84868-4.
 +*Wisan, Winifred Lovell (1984). "Galileo and the Process of Scientific Creation," ''Isis'', 75: 269–286.
 +*Zik Yaakov, "Science and Instruments: The telescope as a scientific instrument at the beginning of the seventeenth century", ''Perspectives on Science'' 2001, Vol. 9, 3, 259–284.
-Une fois les observations de Galilée confirmées par le Collège romain, les attaques changent de nature. [[Ludovico Delle Combe]] attaque sur le plan religieux en demandant si Galilée compte interpréter la [[Bible]] pour la faire s'accorder à ses théories. À cette époque en effet, et avant les travaux [[exégèse|exégétiques]] du {{s|XIX|e}}, le [[psaume]] 93 (92) laissait entendre une [[cosmologie religieuse|cosmologie]] [[géocentrisme|géocentrique]] (dans la ligne : {{citation|Tu as fixé la terre ferme et immobile.}})+== External links ==
 +{{wikiquote}}
 +{{Commons|Galileo Galilei}}
 +*[http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Galileo.html Portraits of Galileo]
 +* [http://asv.vatican.va/en/stud/download/CAV_21.htm Original documents on the trial of Galileo Galilei] in the [[Vatican Secret Archives]]
 +* [http://www.catholic.net/rcc/Periodicals/Issues/GalileoAffair.html Galileo Affair catholic.net]
 +* [http://galileo.rice.edu/ The Galileo Project] at [[Rice University]]
 +* [http://www.pacifier.com/~tpope CCD Images through a Galilean Telescope] Modern recreation of what Galileo might have seen;.
 +* [http://www.mpiwg-berlin.mpg.de/Galileo_Prototype/MAIN.HTM Electronic representation of Galilei's notes on motion (MS. 72)]
 +* [http://www.pbs.org/wgbh/nova/galileo/ PBS Nova Online: ''Galileo's Battle for the Heavens'']
 +* [http://plato.stanford.edu/entries/galileo/ Stanford Encyclopedia of Philosophy entry on Galileo]
 +* [http://www.galilean-library.org The Galilean Library], educational site.
 +* [http://www.catholicleague.org/research/galileo.html ''Galileo and the Catholic Church''] article at Catholic League
 +* {{MacTutor Biography|id=Galileo}}
 +* [http://www.life.com/Life/millennium/events/05.html LIFE top 100 events of the millennium: Galileo Galilei] (nr 5 in this list)
 +* [http://www.intratext.com/Catalogo/Autori/AUT158.HTM Works by Galileo Galilei]: text with concordances and frequencies.
 +*Galilei, Galileo. [http://www.rarebookroom.org/Control/galgal/index.html ''Le Operazioni del Compasso Geometrico et Militare''] 1610 Rome. From [[Rare Book Room]]. Scanned first edition.
 +*Galilei, Galileo. [http://www.rarebookroom.org/Control/galsol/index.html ''Istoria e Dimostrazioni Intorno Alle Macchie Solar''] 1613 Rome. From [[Rare Book Room]]. Scanned first edition.
 +*{{imdb title|id=0956139|title=Animated Hero Classics: Galileo (1997)}}
-=== Les attaques se font plus violentes ===+{{Persondata
 +|NAME=Galilei, Galileo
 +|ALTERNATIVE NAMES=
 +|SHORT DESCRIPTION=[[Italy|Italian]] [[mathematician]], [[physicist]], [[philosopher]] and [[astronomer]]
 +|DATE OF BIRTH={{birth date|1564|2|15|df=y}}
 +|PLACE OF BIRTH=[[Pisa]]
 +|DATE OF DEATH={{death date|1642|1|8|df=y}}
 +|PLACE OF DEATH=[[Arcetri]]
 +}}
 +[[Category:1564 births|Galilei]]
 +[[Category:1642 deaths|Galilei]]
 +[[Category:People from Pisa|Galileo Galilei]]
 +[[Category:Galileo Galilei| ]]
 +[[Category:Experimental physicists]]
 +[[Category:Theoretical physicists]]
 +[[Category:Italian astronomers|Galilei]]
 +[[Category:Italian mathematicians|Galilei]]
 +[[Category:Italian physicists|Galilei]]
 +[[Category:Italian astrologers]]
 +[[Category:16th century people|Astronomers]]
 +[[Category:17th century astronomers|Galilei]]
 +[[Category:New Latin authors|Galilei]]
 +[[Category:Italian Roman Catholics|Galileo Galilei]]
 +[[Category:University of Pisa alumni|Galileo Galilei]]
 +[[Category:Scientific instrument makers]]
-Galilée, de retour à [[Florence]], est inattaquable sur le plan astronomique. Ses adversaires vont donc critiquer sa théorie des corps flottants. Galilée prétend que la [[glace]] flotte parce qu'elle est plus légère que l'[[eau]], alors que les aristotéliciens pensent que c'est dans sa nature de flotter. (Physique quantitative et mathématique de Galilée contre physique qualitative d'[[Aristote]]). L'attaque aura lieu durant un repas à la table de Cosme II au mois de septembre [[1611]].+{{Link FA|bg}}
- +{{Link FA|cs}}
-Galilée est opposé aux professeurs de [[Pise]] et notamment à Delle Combe lui-même, durant ce qu'on appelle la « ''bataille des corps flottants'' ». Galilée réalise l'expérience et sort victorieux de l'échange. Quelques mois plus tard, il en tirera un opuscule où il présente sa théorie.+{{Link FA|de}}
- +{{Link FA|fi}}
-En dehors de ces démêlés, Galilée continue ses recherches. Son système de détermination des [[longitude]]s par l'observation de la position des satellites de Jupiter est proposé à l'[[Espagne]] par l'ambassadeur de [[Toscane]].+{{Link FA|it}}
- +{{Link FA|ja}}
-En [[1612]], il entreprend une discussion avec « Apelles latens post tabulam » (pseudonyme du [[jésuite]] [[Christophe Scheiner]]), un [[astronome]] [[Allemagne|allemand]], au sujet des [[tache solaire|taches solaires]]. Apelles défend l'incorruptibilité du [[Soleil]] en arguant que les taches sont en réalité des [[Amas stellaire|amas d'étoiles]] entre le [[Soleil]] et la [[Terre]]. Galilée démontre que les taches sont soit à la surface même du [[Soleil]], soit si proches qu'on ne peut mesurer leur [[altitude]]. L'[[Académie des Lynx]] publiera cette correspondance le [[22 mars]] [[1613]] sous le titre d'''Istoria e dimostrazioni intorno alle marchie solari e loro accidenti''. Scheiner finira par adhérer à la thèse galiléenne.+
- +
-Le [[2 novembre]] [[1612]], la querelle reprend. Le [[dominicain]] Niccolo Lorini, professeur d'histoire ecclésiastique à [[Florence]], prononce un [[sermon]] résolument opposé à la [[Héliocentrisme|théorie de la rotation de la Terre]]. Sermon sans conséquence particulière, mais qui marque les débuts des attaques religieuses. Les opposants utilisent le passage biblique (''Josué'' 10, 12-14) dans lequel [[Josué]] arrête la course du [[Soleil]] et de la [[lune]], comme arme [[théologie|théologique]] contre Galilée.+
- +
-En décembre [[1613]], le professeur [[Benedetto Castelli]], ancien élève de Galilée et un de ses collègues à [[Pise]], est sommé par la grande-duchesse douairière [[Christine de Lorraine]] de prouver l'[[orthodoxie]] de la [[doctrine]] copernicienne. Galilée viendra en aide à son disciple en lui écrivant une lettre le [[21 décembre]] [[1613]] (traduite dans "''Galilée, dialogues et lettres choisies''", [[1966]], Hermann) sur le rapport entre [[science]] et [[religion]], affirmant que dans le domaine des phénomènes physiques, l'Écriture Sainte n'a pas de juridiction. La grande-duchesse est rassurée, mais la controverse ne faiblit pas.+
- +
-Galilée cependant, continue ses travaux. Du [[12 novembre|12]] au [[15 novembre]], il reçoit [[Jean Tarde]], à qui il présente son [[microscope]] et ses travaux d'astronomie. En [[1614]], il fait la connaissance de [[Jean-Baptiste Baliani]], [[physicien]] [[Gênes|génois]], qui sera son ami et correspondant pendant de longues années.+
- +
-=== La censure de la thèse copernicienne (1616) ===+
-[[Image:Galileo before the Holy Office.jpg|thumb|350px|right|Galilée face au tribunal de l'[[Inquisition]] [[Catholique]] [[Rome|Romain]] peint au [[XIXe siècle]] par [[Joseph-Nicolas Robert-Fleury]].]]+
-Le [[20 décembre]], le père Caccini attaque très violemment Galilée à l'église [[Santa Maria Novella]]. Le [[6 janvier]] 1615, un copernicien, le [[Ordre du Carmel|carmélite]] Paolo Foscarini, publie une lettre traitant positivement de l'opinion des [[Pythagore|pythagoriciens]] et de [[Nicolas Copernic|Copernic]] sur la mobilité de la Terre. Il envisage le système copernicien en tant que réalité physique. La controverse prend une telle ampleur que le cardinal [[Robert Bellarmin|Bellarmin]], favorable à Galilée, est obligé d'intervenir le [[12 avril]]. Il écrit une lettre à Foscarini où il condamne sans équivoque la thèse héliocentrique en l'absence de réfutation concluante du système géocentrique. Tout en reconnaissant l'intérêt pratique, pour le calcul astronomique, du système de Copernic, il déclarait formellement imprudent de l'ériger en vérité physique.+
- +
-En réaction, vers avril [[1615]], Galilée écrit à [[Christine de Lorraine]] une longue lettre dans laquelle il développe admirablement ses arguments en faveur de l'orthodoxie du système copernicien. Galilée y explique que «'' l'intention du [[Saint-Esprit]] est de nous enseigner comment on doit aller au ciel, et non comment va le ciel'' ». On y voit par ailleurs les passages des Écritures qui posaient problème d'un point de vue cosmologique. Cette lettre est, elle aussi, largement diffusée. Pour Galilée, c'était accepter le déplacement du débat sur le terrain de la foi.+
- +
-Malgré cela, Galilée est obligé de se rendre à [[Rome]] pour se défendre contre les calomnies et surtout essayer d'éviter une interdiction de la [[doctrine]] copernicienne. Mais il lui manque la preuve irréfutable de la rotation de la Terre pour appuyer ses plaidoiries. Son intervention arrive trop tard : Lorini, par lettre de dénonciation, avait déjà prévenu Rome de l'arrivée de Galilée et le [[Saint-Office]] avait déjà commencé l'instruction de l'affaire.+
- +
-Cherchant toujours une preuve du mouvement de la Terre pour répondre aux objections du cardinal [[Robert Bellarmin|Bellarmin]], Galilée pense la trouver dans le phénomène des marées. Le [[8 février]] [[1616]], il envoie sa théorie des [[marée]]s (''Discorso del Flusso e Reflusso'') au cardinal Orsini. Cette théorie rappelle la relation entre les marées et la position apparente de la Lune, qui tourne moins vite autour de la Terre (28 jours) que la Terre n'est supposée tourner sur elle-même (1 jour). Malheureusement, Galilée ne peut expliquer ainsi qu'une marée par jour alors qu'il en est couramment observé deux, parfois avec un peu de décalage sur l'heure astronomique qui ne sera expliqué que plus tard par la dynamique des fluides. Elle reste en revanche compatible avec le [[Lois du mouvement de Newton|principe d'inertie]] admises par Galilée. L'influence de la Lune sur les marées avait déjà été soulignée par [[Johannes Kepler|Kepler]], mais Galilée n'en avait pas alors tenu compte. Il fallu attendre l'année [[1728]] et les observations de [[James Bradley|Bradley]] sur l'[[aberration de la lumière]] pour avoir une première preuve directe du mouvement de la Terre par rapport aux étoiles.+
- +
-L'intransigeance de Galilée, qui refuse l'[[équivalence des hypothèses]] copernicienne et ptoléméenne, probablement en vertu du [[rasoir d'Occam]], a sans doute précipité les évènements. De fait, sur la question de la translation de la terre et de sa rotation sur elle-même, les arguments décisifs n'ont été acquis qu'au début du {{s-|XIX|e}}. L'[[équivalence des hypothèses]] était la conclusion rationnelle justifiée pour l'époque; et non l'affirmation d'une réalité physique telle que soutenue par Galilée. En présentant sa théorie comme une vérité absolue (ce qui transforme sa [[cosmologie]] en une [[cosmogonie]]), Galilée se place dans le domaine de la [[Foi]], ce qui justifie l'intervention de la [[censure]]. Une étude du procès par le [[Philosophie des sciences|philosophe des science]] [[Paul Feyerabend]] (voir par exemple dans ''Adieu la Raison'') montre que l'attitude de l'[[inquisiteur]] [[Robert Bellarmin]] fut au moins aussi scientifique que celle de Galilée, même suivant des critères modernes: une cosmologie (qu'elle soit d'ailleurs copernicienne ou ptoléméenne) ne peut qu'être une théorie, sans pouvoir prétendre à la [[Vérité]]. Cependant, cette distinction entre théorie et Vérité, que notre époque moderne perçoit mieux, était trop nouvelle pour l'époque; l'acte d'accusation de Gallilée fait lui-même la confusion en reprochant à Galilée de tenir pour vrai l'héliocentrisme, non pas parce que ce n'est qu'une théorie, mais parce que cette thèse est « ''naïve et absurde en philosophie, et formellement hérétique en tant que contredisant explicitement le sens de nombreux passage des Saintes Écritures'' ».+
- +
-Malgré deux mois passés à remuer ciel et terre pour empêcher l'inévitable, il est convoqué le [[16 février]] [[1616]] par le [[Saint-Office]] pour l'examen des propositions de censure. C'est une catastrophe pour lui. Les [[25 février]] et [[26 février]] [[1616]], la censure est ratifiée par l'[[Inquisition]] et par le [[pape]] [[Paul V]]. La théorie copernicienne est condamnée. Galilée n'est pas inquiété personnellement mais est prié d'enseigner sa thèse en la présentant comme une [[hypothèse]]. Cet arrêté s'étend à tous les pays [[catholique]]s.+
- +
-=== Progrès des thèses de Galilée ===+
-Cette affaire a beaucoup éprouvé Galilée. Ses maladies reviennent le tourmenter pendant les deux années suivantes et son activité scientifique se réduit. Il reprend seulement son étude de la détermination des [[longitude]]s en [[mer]]. Ses deux filles entrent dans les ordres.+
- +
-En [[1618]], on observe le passage de trois [[comète]]s, phénomène qui relance la polémique sur l'incorruptibilité des cieux.+
- +
-En [[1619]], le père [[jésuite]] [[Horatio Grassi]] publie ''De tribus cometis anni 1618 disputatio astronomica''. Il y défend le point de vue de [[Tycho Brahé]] sur les trajectoires [[Courbe elliptique|elliptiques]] des [[comète]]s. Galilée riposte d'abord par l'intermédiaire de son élève [[Mario Guidicci]] qui publie en juin [[1619]] ''Discorso delle comete'' où il développe une théorie farfelue sur les comètes, allant jusqu'à en faire des phénomènes [[Météorologie|météorologique]]s.+
- +
-En octobre, Horatio Grassi attaque Galilée dans un pamphlet plus sournois : aux considérations scientifiques se mêlent des insinuations religieuses malveillantes et très dangereuses au temps de la [[Contre-Réforme]].+
- +
-Cependant, Galilée, encouragé par son ami le cardinal [[Urbain VIII|Barberini]] (futur pape Urbain VIII) et soutenu par l'[[Académie des Lynx]], y répondra avec ironie dans ''Il Saggiatore'' (ou ''L'Essayeur''). Grassi, l'un des plus grands savants [[jésuite]]s, sera ridiculisé.+
- +
-Lorsque [[Peiresc]], ami et ancien élève de Galilée, apprend qu'il est inquiété, il envoie une lettre au cardinal Barberini. <!-- Difficile à dater -->.+
- +
-Entre-temps, Galilée a repris son étude des satellites de Jupiter. Malheureusement des difficultés techniques l'obligent à abandonner le calcul de leurs [[Éphéméride (astronomie)|éphémérides]]. Galilée se voit couvert d'honneurs en [[1620]] et [[1622]].+
- +
-Le [[28 août]] [[1620]], le cardinal [[Urbain VIII|Maffeo Barberini]] adresse à son ami le poème ''Adulatio Perniciosa'' qu'il a composé à son honneur. Le [[20 janvier]] [[1621]], Galilée devient consul de l'Accademia fiorentina. Le [[28 février]], Cosme II, le protecteur de Galilée, meurt subitement.+
- +
-En [[1622]], à [[Francfort]], paraît une ''Apologie de Galilée'' rédigée par [[Tommaso Campanella]] en [[1616]]. Un défenseur bien encombrant, car Campanella est déjà convaincu d'[[hérésie]].+
- +
-Le [[6 août]] [[1622]], le cardinal [[Urbain VIII|Maffeo Barberini]] est élu [[Pape]] sous le nom de [[Urbain VIII]]. Le [[3 février]] [[1623]] Galilée reçoit l'autorisation de publier son ''Saggiatore'' qu'il dédie au nouveau Pape. L'ouvrage paraît le [[20 octobre]] [[1623]]. Ce sont d'abord les qualités polémiques (et littéraires) de l'ouvrage qui assureront son succès à l'époque. Il n'en demeure pas moins qu'en quelques mois et dans une atmosphère de grande effervescence culturelle, Galilée devient en quelque sorte le porte-drapeau des cercles intellectuels romains en rébellion contre le conformisme intellectuel et scientifique imposé par les [[Jésuite]]s.+
- +
-Les années suivantes sont assez calmes pour Galilée malgré les attaques des [[aristotélisme|aristotéliciens]]. Il en profite pour perfectionner son [[microscope]] composé (septembre [[1624]]).+
- +
-En [[1626]], Galilée poursuit ses recherches sur l'armature de l'[[aimant]]. Il reçoit aussi la visite d'[[Élie Dodati]], qui apportera les copies de ses manuscrits à [[Paris]]. En [[1628]], Galilée tombe gravement malade et manque de mourir en mars.+
- +
-L'année suivante, ses adversaires tentent de le priver de l'allocation qu'il reçoit de l'[[Université de Pise]], mais la manœuvre échoue.+
- +
-=== Le "Dialogue" et la condamnation de 1633 ===+
-[[Image:Galilei-weltsysteme 1-621x854.jpg|thumb|200px|right|L'ouvrage [[Dialogue sur les deux grands systèmes du monde]] demandé à Galilée par le Pape [[Urbain VIII]] vers [[1620]] et publié en [[1632]].]]+
-[[Image:Galileo facing the Roman Inquisition.jpg|thumb|350px|right|Galilée face au tribunal de l'[[Inquisition]] [[Catholique]] [[Rome|Romain]] peint en [[1857]] par [[Cristiano Banti]].]]+
-Dans les années 1620, après la censure de ses thèses, Galilée passe un mois à Rome où il est reçu plusieurs fois par le pape [[Urbain VIII]]. Ce dernier lui soumet l'idée de son prochain livre [[Dialogue sur les deux grands systèmes du monde]], ouvrage qui présenterait de façon impartiale à la fois le système aristotélicien et le système copernicien. Il charge Galilée de l'écrire.+
- +
-Jusqu'en [[1631]] Galilée consacre son temps à l'écriture du ''Dialogo'' et à tenter de le faire admettre par la censure. L'ouvrage est achevé d'imprimer en février [[1632]]. Les yeux de Galilée commencent à le trahir en mars et avril.+
- +
-Le [[21 février]] [[1632]], Galilée, protégé par le [[pape]] [[Urbain VIII]] et le [[Liste des grands-ducs de Toscane|grand-duc de Toscane]] [[Ferdinand II de Médicis]], petit fils de [[Christine de Lorraine]], fait paraître à [[Florence]] son dialogue des ''Massimi sistemi'' (''[[Dialogue sur les deux grands systèmes du monde]]'') (''[[Dialogo sopra i due massimi sistemi del mondo]]''), où il raille implicitement le [[géocentrisme]] de [[Ptolémée]].+
- +
-Ce ''[[Dialogue sur les deux grands systèmes du monde|Dialogue]]'' est à la fois une révolution et un scandale. Le ''Dialogue'' se déroule à [[Venise]] sur quatre journées entre trois interlocuteurs : Filippo Salviati, un Florentin partisan de [[Nicolas Copernic|Copernic]], Giovan Francesco Sagredo, un Vénitien éclairé mais sans ''a priori'', et Simplicio, un piètre défenseur de la physique [[aristote|aristotélicienne]], un personnage dans lequel [[Urbain VIII]] se serait (peut-être) reconnu. Mais, lorsqu'on lui reprocha le caractère ostensiblement péjoratif du nom, Galilée répondit qu'il s'agissait de [[Simplicius de Cilicie]].+
- +
-Le [[pape]] lui-même se range donc vite à l'avis des adversaires de Galilée : il lui avait demandé une présentation objective des deux théories, pas un plaidoyer en faveur de [[Nicolas Copernic|Copernic]].+
- +
-Galilée est donc à nouveau convoqué par le [[Saint-Office]], le {{1er octobre}} [[1632]]. Ce qui lui est reproché n'est pas sa thèse elle-même, mais de ne pas respecter une décision de justice - ce qui justifie des sanctions pénales (encore de nos jours). Son livre est en effet ouvertement [[Révolution copernicienne|pro-copernicien]], bafouant l'interdit de [[1616]] (la mise à l'index de ces thèses ne sera levée qu'en [[1757]]). Malade, il ne peut se rendre à Rome qu'en février [[1633]]. Les interrogatoires se poursuivent jusqu'au [[21 juin]] où la menace de [[torture]] est évoquée sur ordre du pape ; Galilée cède.+
- +
-Le [[22 juin]] [[1633]], au [[couvent]] [[dominicain]] de Santa-Maria, la sentence est rendue : Galilée est condamné à la prison à vie (peine immédiatement commuée en résidence à vie par [[Urbain VIII]]) et l'ouvrage est interdit. Il prononce également la formule d'[[abjuration]] que le Saint-Office avait préparée:+
-{{début citation}}+
-''Moi, Galiléo, fils de feu Vincenzio Galilei de Florence, âgé de soixante dix ans, ici traduit pour y être jugé, agenouillé devant les très éminents et révérés cardinaux inquisiteurs généraux contre toute hérésie dans la chrétienté, ayant devant les yeux et touchant de ma main les Saints Évangiles, jure que j'ai toujours tenu pour vrai, et tiens encore pour vrai, et avec l'aide de Dieu tiendrai pour vrai dans le futur, tout ce que la Sainte Église Catholique et Apostolique affirme, présente et enseigne. Cependant, alors que j'avais été condamné par injonction du Saint Office d'abandonner complètement la croyance fausse que le Soleil est au centre du monde et ne se déplace pas, et que la Terre n'est pas au centre du monde et se déplace, et de ne pas défendre ni enseigner cette doctrine erronée de quelque manière que ce soit, par oral ou par écrit; et après avoir été averti que cette doctrine n'est pas conforme à ce que disent les Saintes Écritures, j'ai écrit et publié un livre dans lequel je traite de cette doctrine condamnée et la présente par des arguments très pressants, sans la réfuter en aucune manière; ce pour quoi j'ai été tenu pour hautement suspect d'hérésie, pour avoir professé et cru que le Soleil est le centre du monde, et est sans mouvement, et que la terre n'est pas le centre, et se meut.'' [...]<ref>Pour le texte complet, voir [http://astro.wcupa.edu/mgagne/ess362/resources/finocchiaro.html#conreport Texts from The Galileo Affair] : A Documentary History, edited and translated by Maurice A. Finocchiaro </ref>+
-{{fin citation}}+
-Notons en passant que Galilée n'a jamais prononcé le fameux {{citation|''Et pourtant elle tourne''}} (''Eppur si muove'').+
- +
-Le texte de la sentence est diffusé largement : à Rome le [[2 juillet]], le [[12 août]] à [[Florence]]. La nouvelle arrive en [[Allemagne]] fin août, en [[Belgique]] en septembre. Les décrets du Saint-Office ne seront jamais publiés en [[France]], mais, prudemment, [[René Descartes]] renonce à faire paraître son ''Monde''.+
- +
-Beaucoup (y compris Descartes), à l'époque, pensèrent que Galilée était la victime d'une [[cabale]] des [[Jésuite]]s qui se vengeaient ainsi de l'affront subi par [[Horatio Grassi]] dans le ''Saggiatore''.+
-Les positions du [[théologie]]n [[Principauté de Liège|liégeois]] [[Libert Froidmont]] (de l'[[Université catholique de Louvain (Louvain)|Université de Louvain]]) éclairent bien toute l'équivoque de la condamnation de Galilée.+
- +
-=== La fin ===+
-D'abord assigné à résidence chez l'archevêque Piccolomini à [[Sienne]], il obtient finalement d'être relégué chez lui, à [[Florence]] dans sa villa d'Arcetri<ref>Geymonat, p. 216</ref>, la ''Villa le Gioiello''<ref>Résidence de Galilée à Arcetri, Villa le Gioiello, 42, Via del Pian dei Giullari : [http://maps.google.com/maps?f=q&hl=en&q=N+43°+44%27+52.21,+E11°+15%27+26.39%22&ie=UTF8&z=18&ll=43.748126,11.257339&spn=0.001814,0.004946&t=h&om=1 coordonnées : 43° 44' 52.21" N, 11° 15' 26.39" E.]</ref>, non loin de ses filles au couvent. +
-L'interdiction de rendre visite au « prisonnier d'Arcetri » qui s'assouplit ensuite lui permet de recevoir quelques visites, ce qui lui permet de faire passer la frontière à quelques ouvrages en cours de rédaction. Ces livres paraissent à [[Strasbourg]] et à [[Paris]] en traduction [[latin]]e.+
-[[Image:Galileo Galilei, Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze, 1638 (1400x1400).png|left|150px]]+
-[[Image:Galileos tomb.jpg|thumb|220px|right|[[Mausolée]] de Galilée à l'église [[Santa Croce]] de [[Florence]].]]+
-En [[1636]], [[Louis Elzevier]] reçoit une ébauche des ''Discours sur deux sciences nouvelles'' de la part du maître florentin. C'est le dernier livre qu'écrira Galilée, ouvrage où le scientifique a consigné les découvertes d'où est née la dynamique moderne ; il y établit les fondements de la [[mécanique]] en tant que [[science]] et marque ainsi la fin de la physique [[Aristote|aristotélicienne]]. Il tente aussi de poser les bases de la [[Résistance des matériaux]], avec moins de succès. Il finira ce livre de justesse, car le [[4 juillet]] [[1637]], il perd l'usage de son œil droit.+
- +
-Le [[2 janvier]] [[1638]], Galilée perd définitivement la vue. Par chance, [[Dino Peri]] a reçu l'autorisation de vivre chez Galilée pour l'assister avec le père Ambrogetti qui prendra note de la sixième et dernière partie des ''Discours''. Cette partie ne paraîtra qu'en [[1718]]. L'ouvrage complet paraît en juillet [[1638]] à [[Leyde]] ([[Pays-Bas]]) et à [[Paris]]. Il est lu par les grands esprits de l'époque. [[René Descartes|Descartes]] par exemple enverra ses observations à [[Marin Mersenne|Mersenne]], l'éditeur parisien.+
- +
-Il restera à Arcetri jusqu'à sa mort, entouré de ses disciples ([[Vincenzo Viviani|Viviani]], [[Evangelista Torricelli|Torricelli]], Peri, etc.), travaillant à l'[[astronomie]] et autres sciences. Fin [[1641]], Galilée envisage d'appliquer l'[[oscillation]] du [[pendule (physique)|pendule]] aux mécanismes d'[[horloge]].+
- +
-Quelques jours plus tard, le [[8 janvier]] [[1642]], Galilée s'éteint à Arcetri, une petite colline au sud de [[Florence]], à l'âge de 78 ans. Son corps est inhumé religieusement à [[Florence]] le [[9 janvier]] dans le caveau familial de l'église de [[Santa Croce]] de [[Florence]]. Un [[mausolée]] sera érigé en son honneur le [[13 mars]] [[1736]].+
- +
-== Postérité : de l'incompréhension des scientifiques à l'hommage de l'Église ==+
- +
-Le procès de Galilée, spécialement pour son ouvrage ''[[Dialogue sur les deux grands systèmes du monde]]'' ([[1633]]), a eu des retombées considérables sur la méthode scientifique, tant la [[méthode expérimentale]] que théorique, mais aussi indirectement sur la [[philosophie]] et d'autres domaines de la pensée. En philosophie, on vit ainsi apparaître des courants de pensée [[rationaliste]]s ([[René Descartes|Descartes]]), et [[empirique]]s (voir [[Francis Bacon]], mais aussi [[Robert Boyle]]).+
-Ces retombées sont détaillées dans l'article [[Révolution copernicienne]].+
-Nous nous bornons ici à en décrire les grandes lignes.+
- +
-=== {{s|XVII|e}}: réactions des scientifiques ===+
- +
-La théorie de l'[[héliocentrisme]], souleva d'abord des questions d'interprétation des textes [[biblique]]s ([[terre]] fixe au centre de l'[[univers]] ), et de [[métaphysique]], qui entraînèrent des réactions des scientifiques :+
-* [[René Descartes|Descartes]] se lança dans un projet [[philosophie|philosophique]] ([[cogito]]), et dans les ''[[méditations sur la philosophie première]]'' ([[1641]]), dénonça la philosophie d'[[Aristote]] et la [[scolastique]] ([[Thomas Hobbes]] ne le suivit pas sur ce point) +
-* [[Blaise Pascal]] rejoignit le courant [[janséniste]], et participa avec une équipe de [[Port-Royal]] à une traduction de la [[Bible]] sous la direction de [[Lemaître de Sacy]], qui fut la seule [[traduction de la Bible en français]] au {{s|XVII|e}}.+
- +
-=== {{s|XVIII|e}} : le pape [[Benoît XIV]] autorise les ouvrages sur l'[[héliocentrisme]] ===+
- +
-Le [[pape]] [[Benoît XIV]] autorisa les ouvrages sur l'[[héliocentrisme]] dans la première moitié du {{s|XVIII|e}}, et ceci en deux temps :+
- +
-* En [[1741]], devant la preuve optique de l'orbitation de la Terre faite par [[James Bradley|Bradley]] en [[1728]], il fit donner par le Saint-Office l'imprimatur à la première édition des œuvres complètes de [[Galileo Galilei|Galilée]], avec cependant l'ajout du fait que le mouvement de la Terre est ''supposé''. Ce geste constitua une révision implicite des sentences de [[1616]] et [[1633]], même si celles-ci ne furent pas abrogées.+
- +
-* En [[1757]], les ouvrages favorables à l'[[héliocentrisme]] furent à nouveau autorisés, par un décret de la [[Index Librorum Prohibitorum|Congrégation de l'Index]], qui retira ces ouvrages du [[Index Librorum Prohibitorum|catalogue des livres interdits]].+
- +
-Il y eut encore peu de [[traductions de la Bible en français]], mais on commença à faire des travaux d'[[exégèse]] à partir des textes anciens.+
- +
-=== {{s|XIX|e}} : les travaux d'[[exégèse]] s'intensifient ===+
- +
-Les [[protestant]]s travaillèrent sur l'[[Ancien Testament]], tandis que les [[catholique]]s s'attelèrent au [[Nouveau Testament]]. Le pape [[Léon XIII]] indiqua les règles à adopter pour les études bibliques ([[encyclique]] ''Providentissimus deus'' de [[1893]]). 19 [[traductions de la Bible en français]] parurent au {{s|XIX|e}}.+
- +
-=== {{s|XX|e}} : les [[pape]]s modernes rendent hommage au savant ===+
- +
-[[Image:Galileo Galilei01.jpg|thumb|right|220px|Sa statue sur le [[piazzale des Offices]] de Florence]]+
- +
-Tous les [[pape]]s modernes ont rendu hommage au grand savant qu'était Galilée, et ont publiquement reconnu que certaines interventions de l'Église dans le domaine scientifique étaient indues.+
- +
-De nouvelles traductions de la [[Bible]] apparaissent dans la deuxième moitié du {{s|XX|e}}, tenant compte des études bibliques ([[exégèse]] et [[herméneutique]]) lancées par les [[pape]]s [[Léon XIII]] et [[Pie XII]] (qui ne s'est pas offusqué de la théorie du [[big bang]], voir [[Big bang#Pie XII et le Big Bang|Pie XII et le Big Bang]]).+
- +
-En [[1979]] et en [[1981]], le [[pape]] [[Jean-Paul II]] chargea une commission d'étudier la controverse ptoléméo-copernicienne des XVIe-{{s|XVII|e}}. [[Jean-Paul II]] considèra qu'il ne s'agissait pas d'une réhabilitation. Celle-ci est d'ailleurs implicite après les autorisations données par [[Benoît XIV]] en [[1741]] et en [[1757]].+
- +
-Le [[31 octobre]] [[1992]], [[Jean-Paul II]] rend une nouvelle fois hommage au savant lors de son [http://www.vatican.va/holy_father/john_paul_ii/speeches/1992/october/documents/hf_jp-ii_spe_19921031_accademia-scienze_fr.html Discours] aux participants à la session plénière de l'[[Académie des Lynx|Académie pontificale des sciences]]. Il a reconnu clairement les erreurs de certains théologiens du {{s|XVII|e}} dans l'affaire :+
- +
-{{début citation}}''Ainsi la science nouvelle, avec ses méthodes et la liberté de recherche qu'elle suppose, obligeait les [[théologie]]ns à s'interroger sur leurs propres critères d'interprétation de l'Écriture. La plupart n'ont pas su le faire.''{{fin citation}}+
- +
-{{début citation}}''Paradoxalement, Galilée, croyant sincère, s'est montré plus perspicace sur ce point que ses adversaires théologiens. « Si l'écriture ne peut errer, écrit-il à [[Benedetto Castelli]], certains de ses interprètes et commentateurs le peuvent, et de plusieurs façons ». On connaît aussi sa lettre à [[Christine de Lorraine]] ([[1615]]) qui est comme un petit traité d'[[herméneutique]] [[Bible|biblique]]''.{{fin citation}}+
- +
-En octobre [[2005]], le livre du cardinal [[Paul Poupard]] sur l'affaire Galilée est publié. La même année, Francesco Beretta, l'un des spécialistes de la question, donne un cours sur l'affaire Galilée au [http://www.koyre.cnrs.fr/article.php3?id_article=277 Centre Alexandre Koyré].+
- +
-Les contresens dans le grand public concernant le travail de Galilée n'en subsistent pas moins, et cette fois-ci d'une autre manière : en [[2007]], plusieurs sites ou journalistes lui attribuent encore à tort la découverte non de l'héliocentrisme, [http://www.google.fr/search?hl=fr&q=galil%C3%A9e+terre+ronde mais de la rotondité de la Terre], mise en évidence par l'expédition de [[Magellan]] bien avant la naissance de Galilée.+
- +
-== Hommages à Galilée ==+
-* l'[[astéroïde]] [[(697) Galilea]] a été nommé en son honneur, à l'occasion du 300{{e}} anniversaire de sa découverte des [[lune galiléenne|lunes galiléennes]] ;+
-*[[Sonde Galileo|Galileo]] est le nom d'une sonde de la [[NASA]] envoyée vers [[Jupiter (planète)|Jupiter]] et [[Lune galiléenne|ses satellites]] ;+
-* [http://www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;+
-* [http://www.galilee.be La Haute Ecole Galilée] est un établissement d'enseignement supérieur bruxellois dans le domaine de la communication (master journalisme, publicité, ...), des soins infirmiers (bachelier en soins infirmiers), de l'enseignement (bachelier régent de l'enseignement secondaire inférieur, ...) et du secteur économique (bachelier en secrétariat de direction et bachelier en tourisme) ; +
-*[[Galileo (système de positionnement)|Galileo]] est aussi le futur système de positionnement européen ;+
-*''[[La vie de Galilée]]'' est une pièce de théâtre de [[Bertolt Brecht]] ;+
-* la vie de Galilée fait également l'objet d'un album du groupe de Metal Allemand ''[[Haggard]]'' avec l'opus « Eppur Si Muove » qui lui est entièrement consacré ;+
-* en [[2005]], un téléfilm français, ''[[Galilée ou l'amour de Dieu]]'' est réalisé par [[Jean-Daniel Verhaeghe]], avec [[Claude Rich]] dans le rôle de Galilée. Ce film retrace son procès en Inquisition ;+
-* ''Galilée'', opéra en 12 scènes de Michael Jarrell (livret du compositeur d'après ''[[La Vie de Galilée]]'' de [[Bertolt Brecht]]), est créé à Genève en janvier 2006.+
- +
-==Citation==+
-{{Pour Wikiquote}}+
-{{début_citation}}La philosophie ''[au sens de science(s) de la nature]'' est écrite dans ce livre gigantesque qui est continuellement ouvert à nos yeux (je parle de l'Univers), mais on ne peut le comprendre si d'abord on n'apprend pas à en comprendre la [[langue]] et à en connaître les [[typographie|caractères]] dans lesquels il est écrit. Il est écrit en langage mathématique, et les caractères en sont des triangles, des cercles, et d'autres figures géométriques, sans lesquelles il est impossible d'y comprendre un mot. Dépourvu de ces moyens, on erre vainement dans un labyrinthe obscur.{{fin_citation|''Il saggiatore'', en français ''L'Essayeur''}}+
- +
-==Œuvres==+
-[[Image:Galileo Galilei, Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze, 1638 (1400x1400).png|thumb|right|250px]]+
-Principaux ouvrages scientifiques:+
-* 1606 : le Operazioni del compasso geometrico et militare di Galileo-Galilei, nobil Fiorentino.+
-* 1610 : Discorso intorno alle cose che stanno in su l'acqua et che in quella si muovono.+
-* 1610 : [[Siderus nuncius]], magna longeque admirabilia spectacula prodens, etc.+
-* 1613 : Storia e dimonstrazioni intorno alle macchie solari et loro accidenti, dal signor Galileo-Galilei.+
-* 1623 : il Saggiatore nel quale con bilancia esquisita et giusta si ponderano le cose contenute nella libra astronomica et filosofica di Lotario Sarsi, etc.+
-* 1638 : Discorsi e Dimonstrazioni matematiche intorno a due scienze attenanti alla mecanica ed i movimenti locali.+
-Bibliographie:+
-* Galilée, ''Lettre à Christine de Lorraine et autres écrits coperniciens'', traduction par Philippe Hamou et Martha Spranzi. Paris, Librairie générale française, [[2004]]. ISBN 2-253-06764-4.+
-*Galilée, ''L'Essayeur'', traduction par Christine Chauviré. Paris, les Belles Lettres, [[1979]]. (Annales littéraires de l'Université de Besançon ; 234). ISBN 2-251-60234-8.+
-* Galileo Galilei, ''Le Messager des étoiles'', traduction annotée par Fernand Hallyn. Paris, Seuil, [[1992]] (Sources du savoir). ISBN 2-02-014593-6.+
-* Galileo Galilei, ''Sidereus nuncius. Le messager céleste'', texte et traduction par Isabelle Pantin. Paris, les Belles Lettres, [[1992]]. (Science et humanisme). ISBN 2-251-34505-1 ;+
-* Galileo Galilei, ''[[Dialogue sur les deux grands systèmes du monde]]'', publié en [[1632]], traduction par René Fréreux et François de Gandt. Paris, Seuil, Points Sciences, [[2000]]. ISBN 2-02-041635-2 ;+
-* Galilée, ''Discours concernant deux sciences nouvelles'', traduction par Maurice Clavelin. Paris, PUF [[1995]]. ISBN 2-13-046854-3 (repris de A.Colin 1970). Les quatre premières journées seulement. La sixième journée a été publiée par S. Moscovici dans la revue Isis.+
- +
-== Annexes ==+
-Au Musée de la ''Storia della Scienza'' (Histoire des Sciences) de Florence, près des Offices : vitrines consacrées à de nombreux instruments de Galilée, également la relique momifiée de l'index de Galilée, celui-là même ayant désigné les astres qu'il voyait avec sa lunette.+
- +
-=== Bibliographie ===+
-* ''Galilée'', de [[Ludovico Geymonat]] Turin (1957), traduction française coll. Sciences, Seuil (1992), biographie ISBN 202014753X+
-* ''La vie de Galilée'', de [[Bertolt Brecht]] (pièce de théâtre)+
-* ''Exorciser le spectre de Galilée'', par Philippe Marcille, Éditions du Sel, 2006.+
-* ''L'affaire Galilée'', [[Paul Poupard|cardinal Poupard]], éditions de France, octobre [[2005]],+
-* ''Galilée en procès, Galilée réhabilité ?'', sous la direction de Francesco Beretta. Saint-Maurice, Éditions Saint-Augustin, 2005. ISBN 2-88011-369-5.+
-* ''Galilée copernicien'', de Maurice Clavelin. Paris, Albin Michel, 2004. ISBN 2-226-14235-5.+
-* ''Sur les épaules des géants'', de [[Stephen Hawking]], éditions Dunod, 2003 ;+
-* ''Le mythe Galilée'', Fabien Chareix, PUF, [[2002]] ;+
-* ''Galilée'', de Claude Allègre, éditions Plon, 2002 ;+
-* ''Galilée'' de Georges Minois. Paris, PUF, 2000. (Que sais-je ? n° 3574). ISBN 2-13-050919-3.+
-* ''La révolution galiléenne. De la lunette au système du monde'' de William R. Shea ; trad. de la 2{{e}} éd. anglaise par François de Gandt. Paris, éd. du Seuil, 1992. (Science ouverte). 313p. ISBN 2-02-012417-3.+
-* Stengers Isabelle, Les affaires Galilée, dans Michel Serres (dir.), ''Éléments d'Histoire des sciences'', Paris, Bordas, p. 223-273. ISBN 2-04-018467-8.+
-* ''Galileo, courtier : the practice of science in the culture of absolutism'' de Mario Biagioli, Chicago, University of Chicago Press, 1993.+
-* ''Galilée hérétique'' de Pietro Redondi. Paris, Gallimard, 1985. (Bibliothèque des Histoires). ISBN 2-07-070419-X.+
-* ''Galileo Galilei'', 350 ans d'histoire (1633-1983), ouvrage collectif sous la direction de Mgr Poupard, Desclée International, Tournai 1983.+
-* ''Études galiléennes'' d'Alexandre Koyré. Paris, Hermann, 1966. (Histoire de la pensée ; 15).+
-* ''Galileo Galilei'', School of Mathematics and Statistics - University of St Andrews ;+
-* ''The Galileo Project'', Rice University ;+
-* Lerner (Michel Pierre), Pour une édition critique de la sentence et de l'abjuration de Galilée, in : ''Revue des sciences philosophiques et théologiques'' 82-4 (Paris 1998), p. 607-629.+
-* ''Et pourtant elle tourne (la vie de Galilée)'' de [[Zsolt Harsanyi]], adaptation française de Muller-Strauss, éd. Calmann-Lévy (1947)+
- +
-===Filmographie===+
-*[[2005 à la télévision|2005]] : [[Galilée ou l'amour de Dieu]] de [[Jean-Daniel Verhaeghe]] avec [[Claude Rich]] dans le rôle de Galilée et [[Jean-Pierre Marielle]] dans celui du pape [[Urbain VIII]].+
- +
-=== Articles connexes ===+
-* [[Dialogue sur les deux grands systèmes du monde]]+
-* [[Révolution copernicienne]]+
-* [[Monde (univers)|Vision du monde]]+
-* [[Héliocentrisme]] versus [[géocentrisme]]+
-* [[Relation entre science et religion]]+
-* [[Méthode expérimentale]]+
-* Sur le contexte [[géopolitique]] et religieux du procès de [[1632]], voir aussi [[Urbain VIII]].+
- +
-=== Liens externes ===+
-{{Commons|Category:Galileo Galilei}}+
-{{wikiquote|Galileo Galilei}}+
-* [http://libraries.theeuropeanlibrary.org/ItalyFlorence/treasures_fr.xml Sidereus Nuncius] Trésor de la Bibliothèque Italie-Florence+
- +
-===Notes et références===+
-{{Références|colonnes=2}}+
- +
-{{multi bandeau|Portail Renaissance|Portail astronomie|Portail physique}}+
- +
-{{Lien BA|als}}+
-{{Lien AdQ|bg}}+
-{{Lien BA|cs}}+
-{{Lien AdQ|de}}+
-{{Lien AdQ|it}}+
-{{Lien AdQ|ja}}+
- +
-{{DEFAULTSORT:Galilei, Galileo}}+
-[[Catégorie:Catégorie:Galileo Galilei|*]]+
-[[Catégorie:Natif de Pise]]+
-[[Catégorie:Personnalité italienne du XVIe siècle]]+
-[[Catégorie:Personnalité italienne du XVIIe siècle]]+
-[[Catégorie:Astronome]]+
-[[Catégorie:Astronome italien]]+
-[[Catégorie:Physicien italien]]+
-[[Catégorie:Philosophe italien]]+
-[[Catégorie:Philosophe catholique]]+
-[[Catégorie:Histoire des sciences]]+
-[[Catégorie:Victime de l'inquisition]]+
-[[Catégorie:Académie des Ricovrati]]+
-[[Catégorie:Naissance en 1564]]+
-[[Catégorie:Décès en 1642]]+
[[als:Galileo Galilei]] [[als:Galileo Galilei]]
 +[[ar:غاليليو غاليلي]]
[[an:Galileo Galilei]] [[an:Galileo Galilei]]
-[[ar:غاليليو غاليلي]] 
[[ast:Galileo Galilei]] [[ast:Galileo Galilei]]
[[az:Qalileo Qaliley]] [[az:Qalileo Qaliley]]
-[[bcl:Galileo Galilei]]+[[bn:গ্যালিলিও গ্যালিলি]]
[[be:Галілеа Галілей]] [[be:Галілеа Галілей]]
[[be-x-old:Галілеа Галілей]] [[be-x-old:Галілеа Галілей]]
 +[[bcl:Galileo Galilei]]
 +[[bs:Galileo Galilej]]
 +[[br:Galileo Galilei]]
[[bg:Галилео Галилей]] [[bg:Галилео Галилей]]
-[[bn:গ্যালিলিও গ্যালিলি]] 
-[[br:Galileo Galilei]] 
-[[bs:Galileo Galilej]] 
[[ca:Galileo Galilei]] [[ca:Galileo Galilei]]
[[cs:Galileo Galilei]] [[cs:Galileo Galilei]]
Ligne 408: Ligne 383:
[[da:Galileo Galilei]] [[da:Galileo Galilei]]
[[de:Galileo Galilei]] [[de:Galileo Galilei]]
-[[diq:Galileo Galilei]]+[[et:Galileo Galilei]]
[[el:Γαλιλαίος Γαλιλέι]] [[el:Γαλιλαίος Γαλιλέι]]
-[[en:Galileo Galilei]]+[[es:Galileo Galilei]]
[[eo:Galilejo]] [[eo:Galilejo]]
-[[es:Galileo Galilei]] 
-[[et:Galileo Galilei]] 
[[eu:Galileo Galilei]] [[eu:Galileo Galilei]]
[[fa:گالیلئو گالیله]] [[fa:گالیلئو گالیله]]
-[[fi:Galileo Galilei]] {{Lien AdQ|fi}}+[[fr:Galileo Galilei]]
[[ga:Galileo Galilei]] [[ga:Galileo Galilei]]
[[gd:Galileo Galilei]] [[gd:Galileo Galilei]]
[[gl:Galileo Galilei]] [[gl:Galileo Galilei]]
-[[he:גלילאו גליליי]]+[[ko:갈릴레오 갈릴레이]]
 +[[hy:Գալիլեյ Գալիլեո]]
[[hi:गालीलेओ गालीलेई]] [[hi:गालीलेओ गालीलेई]]
[[hr:Galileo Galilej]] [[hr:Galileo Galilej]]
-[[hu:Galileo Galilei]]+[[io:Galileo Galilei]]
-[[hy:Գալիլեյ Գալիլեո]]+[[id:Galileo Galilei]]
[[ia:Galileo Galilei]] [[ia:Galileo Galilei]]
-[[id:Galileo Galilei]] 
[[ie:Galileo Galilei]] [[ie:Galileo Galilei]]
-[[io:Galileo Galilei]] 
[[is:Galíleó Galílei]] [[is:Galíleó Galílei]]
[[it:Galileo Galilei]] [[it:Galileo Galilei]]
-[[ja:ガリレオ・ガリレイ]]+[[he:גלילאו גליליי]]
[[jv:Galileo Galilei]] [[jv:Galileo Galilei]]
[[ka:გალილეო გალილეი]] [[ka:გალილეო გალილეი]]
-[[kab:Galileo Galilei]] 
-[[ko:갈릴레오 갈릴레이]] 
[[ku:Galileo Galilei]] [[ku:Galileo Galilei]]
 +[[lad:Galileo Galilei]]
[[la:Galilaeus Galilaei]] [[la:Galilaeus Galilaei]]
-[[lad:Galileo Galilei]]+[[lv:Galileo Galilejs]]
[[lb:Galileo Galilei]] [[lb:Galileo Galilei]]
[[lt:Galilėjas Galilėjus]] [[lt:Galilėjas Galilėjus]]
-[[lv:Galileo Galilejs]]+[[hu:Galileo Galilei]]
[[mk:Галилео Галилеј]] [[mk:Галилео Галилеј]]
[[ml:ഗലീലിയോ]] [[ml:ഗലീലിയോ]]
-[[mn:Галилео Галилей]]+[[mt:Galileo Galilei]]
[[mr:गॅलिलियो]] [[mr:गॅलिलियो]]
[[ms:Galileo Galilei]] [[ms:Galileo Galilei]]
-[[mt:Galileo Galilei]]+[[mn:Галилео Галилей]]
-[[nds:Galileo Galilei]]+
[[nl:Galileo Galilei]] [[nl:Galileo Galilei]]
-[[nn:Galileo Galilei]]+[[ja:ガリレオ・ガリレイ]]
 +[[pih:Galileo Galilei]]
[[no:Galileo Galilei]] [[no:Galileo Galilei]]
 +[[nn:Galileo Galilei]]
[[nov:Galileo Galilei]] [[nov:Galileo Galilei]]
 +[[uz:Galileo Galilei]]
[[pag:Galileo Galilei]] [[pag:Galileo Galilei]]
-[[pih:Galileo Galilei]] 
-[[pl:Galileusz]] 
[[pms:Galileo Galilei]] [[pms:Galileo Galilei]]
 +[[nds:Galileo Galilei]]
 +[[pl:Galileusz]]
[[pt:Galileu Galilei]] [[pt:Galileu Galilei]]
 +[[ro:Galileo Galilei]]
[[qu:Galileo Galilei]] [[qu:Galileo Galilei]]
-[[ro:Galileo Galilei]] 
[[ru:Галилей, Галилео]] [[ru:Галилей, Галилео]]
-[[scn:Galileu Galilei]] 
[[sco:Galileo Galilei]] [[sco:Galileo Galilei]]
-[[sh:Galileo Galilej]]+[[sq:Galileo Galilei]]
 +[[scn:Galileu Galilei]]
[[simple:Galileo Galilei]] [[simple:Galileo Galilei]]
[[sk:Galileo Galilei]] [[sk:Galileo Galilei]]
[[sl:Galileo Galilei]] [[sl:Galileo Galilei]]
-[[sq:Galileo Galilei]] 
[[sr:Галилео Галилеј]] [[sr:Галилео Галилеј]]
 +[[sh:Galileo Galilej]]
 +[[fi:Galileo Galilei]]
[[sv:Galileo Galilei]] [[sv:Galileo Galilei]]
 +[[tl:Galileo Galilei]]
[[ta:கலீலியோ கலிலி]] [[ta:கலீலியோ கலிலி]]
 +[[kab:Galileo Galilei]]
[[th:กาลิเลโอ กาลิเลอี]] [[th:กาลิเลโอ กาลิเลอี]]
-[[tl:Galileo Galilei]]+[[vi:Galileo Galilei]]
[[tr:Galileo Galilei]] [[tr:Galileo Galilei]]
[[uk:Галілей Галілео]] [[uk:Галілей Галілео]]
-[[uz:Galileo Galilei]] 
-[[vi:Galileo Galilei]] 
[[yi:גאלילעא גאליליי]] [[yi:גאלילעא גאליליי]]
-[[zh:伽利略·伽利莱]] 
[[zh-yue:伽利略]] [[zh-yue:伽利略]]
 +[[diq:Galileo Galilei]]
 +[[zh:伽利略·伽利莱]]

Version du 18 décembre 2007 à 11:01

Modèle:Pp-semi-protected Modèle:Redirect6 Modèle:Infobox Scientist Galileo Galilei (15 February 1564<ref name=birthdate> Drake (1978, p.1). The date of Galileo's birth is given according to the Julian calendar, which was then in force throughout the whole of Christendom. In 1582 it was replaced in Italy and several other Catholic countries with the Gregorian calendar. Unless otherwise indicated, dates in this article are given according to the Gregorian calendar.</ref> – 8 January 1642)<ref name="McTutor"/><ref>Modèle:Ws by John Gerard. Retrieved 11 August 2007</ref> was a Tuscan (Italian) physicist, mathematician, astronomer, and philosopher who played a major role in the scientific revolution. His achievements include the first systematic studies of uniformly accelerated motion, improvements to the telescope and consequent astronomical observations, and support for Copernicanism. Galileo's empirical work was a significant break from the abstract Aristotelian approach of his time. Galileo has been called the "father of modern observational astronomy",<ref>«  » (page 217)</ref> the "father of modern physics",<ref name="Einstein">Modèle:Cite book</ref> the "father of science",<ref name="Einstein" /> and “the Father of Modern Science.”<ref name=finocchiaro2007> Finocchiaro (2007).</ref> The motion of uniformly accelerated objects, taught in nearly all high school and introductory college physics courses, was studied by Galileo as the subject of kinematics. His contributions to observational astronomy include the discovery of the four largest satellites of Jupiter, named the Galilean moons in his honour, and the observation and analysis of sunspots. Galileo also worked in applied science and technology, improving compass design.

Galileo's championing of Copernicanism was controversial within his lifetime. The geocentric view had been dominant since the time of Aristotle, and the controversy engendered by Galileo's opposition to this view resulted in the Catholic Church's prohibiting the advocacy of heliocentrism as potentially factual, because that theory had no decisive proof and was contrary to the literal meaning of Scripture.<ref name="contrary to scripture">Sharratt (1996, pp.127-131), McMullin (2005a).</ref> Galileo was eventually forced to recant his heliocentrism and spent the last years of his life under house arrest on orders of the Inquisition.

Sommaire

Life

Galileo was born in Pisa (then part of the Grand Duchy of Tuscany), the first of six children of Vincenzo Galilei, a famous lutenist and music theorist, and Giulia Ammannati. Although he seriously considered the priesthood as a young man, he enrolled for a medical degree at the University of Pisa at his father's urging. He did not complete this degree, but instead studied mathematics. In 1589, he was appointed to the chair of mathematics in Pisa. In 1591 his father died and he was entrusted with the care of his younger brother Michelagnolo. In 1592, he moved to the University of Padua, teaching geometry, mechanics, and astronomy until 1610. During this period Galileo made significant discoveries in both pure science (for example, kinematics of motion, and astronomy) and applied science (for example, strength of materials, improvement of the telescope). His multiple interests included the study of astrology, which in premodern disciplinary practice was seen as correlated to the studies of mathematics and astronomy.<ref>H. Darrel Rutkin. Galileo, Astrology, and the Scientific Revolution: Another Look. Program in History & Philosophy of Science & Technology, Stanford University. Retrieved on 2007-04-15.</ref>

Although a devout Roman Catholic, Galileo fathered three children out of wedlock with Marina Gamba. They had two daughters (Virginia in 1600 and Livia in 1601) and one son (Vincenzio, in 1606). Because of their illegitimate birth, their father considered the girls unmarriageable. Their only worthy alternative was the religious life. Both girls were sent to the convent of San Matteo in Arcetri and remained there for the rest of their lives.<ref name="daughters unmarriageable"> Sobel (2000, p.5). Chapter 1. Retrieved on August 26, 2007. "But because he never married Virginia's mother, he deemed the girl herself unmarriageable. Soon after her thirteenth birthday, he placed her at the Convent of San Matteo in Arcetri."</ref> Virginia (b. 1600) took the name Maria Celeste upon entering the convent. She died on April 2 1634, and is buried with Galileo at the Basilica di Santa Croce di Firenze. Livia (b. 1601) took the name Suor Arcangela and was ill for most of her life. Vincenzio (b. 1606) was later legitimized and married Sestilia Bocchineri.

In 1610 Galileo published an account of his telescopic observations of the moons of Jupiter, using this observation to argue in favor of the sun-centered, Copernican theory of the universe against the dominant earth-centered Ptolemaic and Aristotelian theories. The next year Galileo visited Rome in order to demonstrate his telescope to the influential philosophers and mathematicians of the Jesuit Collegio Romano, and to let them see with their own eyes the reality of the four moons of Jupiter. While in Rome he was also made a member of the Accademia dei Lincei. In 1612, opposition arose to the Sun-centered solar system which Galileo supported. In 1614, from the pulpit of Santa Maria Novella, Father Tommaso Caccini (1574–1648) denounced Galileo's opinions on the motion of the Earth, judging them dangerous and close to heresy. Galileo went to Rome to defend himself against these accusations, but, in 1616, Cardinal Roberto Bellarmino personally handed Galileo an admonition enjoining him neither to advocate nor teach Copernican astronomy.<ref>There are contradictory documents describing the nature of this admonition and the circumstances of its delivery. Finocchiaro, The Galileo Affair, pp.147–149, 153</ref> During 1621 and 1622 Galileo wrote his first book, The Assayer (Il Saggiatore), which was approved and published in 1623. In 1630, he returned to Rome to apply for a license to print the Dialogue Concerning the Two Chief World Systems, published in Florence in 1632. In October of that year, however, he was ordered to appear before the Holy Office in Rome.

Scientific methods

Galileo Galilei pioneered the use of quantitative experiments whose results could be analyzed with mathematical precision (More typical of science at the time were the qualitative studies of William Gilbert, on magnetism and electricity). Galileo's father, Vincenzo Galilei, a lutenist and music theorist, had performed experiments establishing perhaps the oldest known non-linear relation in physics: for a stretched string, the pitch varies as the square root of the tension. These observations lay within the framework of the Pythagorean tradition of music, well-known to instrument makers, which included the fact that subdividing a string by a whole number produces a harmonious scale. Thus, a limited amount of mathematics had long related music and physical science, and young Galileo could see his own father's observations expand on that tradition. Galileo is perhaps the first to clearly state that the laws of nature are mathematical. In The Assayer he wrote "Philosophy is written in this grand book, the universe ... It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures; ...".<ref>In Drake (1957, pp.237−238)</ref> His mathematical analyses are a further development of a tradition employed by late scholastic natural philosophers, which Galileo learned when he studied philosophy.<ref> Wallace, (1984)</ref> Although he tried to remain loyal to the Catholic Church, his adherence to experimental results, and their most honest interpretation, led to a rejection of blind allegiance to authority, both philosophical and religious, in matters of science. In broader terms, this aided to separate science from both philosophy and religion; a major development in human thought.

By the standards of his time, Galileo was often willing to change his views in accordance with observation. Philosopher of science Paul Feyerabend also noted the supposedly improper aspects of Galileo's methodology, but he argued that Galileo's methods could be justified retroactively by their results. The bulk of Feyerabend's major work, Against Method (1975), was devoted to an analysis of Galileo, using his astronomical research as a case study to support Feyerabend's own anarchistic theory of scientific method. As he put it: 'Aristotelians [...] demanded strong empirical support while the Galileans were content with far-reaching, unsupported and partially refuted theories. I do not criticize them for that; on the contrary, I favour Niels Bohr's "this is not crazy enough."'<ref>Paul Feyerabend, Against Method (third edition, London: Verso, 1993), p. 129.</ref> In order to perform his experiments, Galileo had to set up standards of length and time, so that measurements made on different days and in different laboratories could be compared in a reproducible fashion. For measurements of particularly short intervals of time, Galileo sang songs with whose timing he was familiar[citation needed].

Galileo showed a remarkably modern appreciation for the proper relationship between mathematics, theoretical physics, and experimental physics. He understood the parabola, both in terms of conic sections and in terms of the ordinate (y) varying as the square of the abscissa (x). Galilei further asserted that the parabola was the theoretically-ideal trajectory for uniformly accelerated motion, in the absence of friction and other disturbances. He also noted that there are limits to the validity of this theory, stating that it was appropriate only for laboratory-scale and battlefield-scale trajectories, and noting on theoretical grounds that the parabola could not possibly apply to a trajectory so large as to be comparable to the size of the planet.<ref> Galilei (1954, p.250); Favaro (1898, 8:274) Modèle:It icon. </ref> Thirdly, Galilei recognized that his experimental data would never agree exactly with any theoretical or mathematical form, because of the imprecision of measurement, irreducible friction, and other factors.

According to Stephen Hawking, Galileo probably bears more of the responsibility for the birth of modern science than anybody else,<ref name="Hawking galileo"> Hawking (1988, p.179).</ref> and Albert Einstein called him the father of modern science.<ref name="father of science Einstein"> Einstein (1954, p.271). "Propositions arrived at by purely logical means are completely empty as regards reality. Because Galileo realised this, and particularly because he drummed it into the scientific world, he is the father of modern physics—indeed, of modern science altogether."</ref>

Astronomy

Contributions

Image:Galileo.script.arp.600pix.jpg.jpg
It was on this page that Galileo first noted an observation of the moons of Jupiter. This observation upset the notion that all celestial bodies must revolve around the Earth. Galileo published a full description in Sidereus Nuncius in March 1610
Image:Phases-of-Venus.svg
The phases of Venus, observed by Galileo in 1610

Based only on uncertain descriptions of the telescope, invented in the Netherlands in 1608, Galileo, in that same year, made a telescope with about 3x magnification, and later made others with up to about 32x magnification. With this improved device he could see magnified, upright images on the earth - it was what is now known as a terrestrial telescope, or spyglass. He could also use it to observe the sky; for a time he was one of very few who could construct telescopes good enough for that purpose. On 25 August 1609, he demonstrated his first telescope to Venetian lawmakers. His work on the device made for a profitable sideline with merchants who found it useful for their shipping businesses and trading issues. He published his initial telescopic astronomical observations in March 1610 in a short treatise entitled Sidereus Nuncius (Starry Messenger).

On January 7 1610 Galileo observed with his telescope what he described at the time as "three fixed stars, totally invisible<ref name=invisible>i.e. invisible to the naked eye.</ref> by their smallness", all within a short distance of Jupiter, and lying on a straight line through it.<ref name="jupiter's moons"> Drake (1978, p.146).</ref> Observations on subsequent nights showed that the positions of these "stars" relative to Jupiter were changing in a way that would have been inexplicable if they had really been fixed stars. On January 10 Galileo noted that one of them had disappeared, an observation which he attributed to its being hidden behind Jupiter. Within a few days he concluded that they were orbiting Jupiter:<ref name=moonconclusion> In Sidereus Nuncius (Favaro, 1892, 3:81 Modèle:Latin) Galileo stated that he had reached this conclusion on January 11. Drake (1978, p.152), however, after studying unpublished manuscript records of Galileo's observations, concluded that he did not do so until January 15. </ref> he had discovered three of Jupiter's four largest satellites (moons): Io, Europa, and Callisto. He discovered the fourth, Ganymede, on January 13. Galileo named the four satellites he had discovered Medicean stars, in honour of his future patron, Cosimo II de' Medici, Grand Duke of Tuscany, and Cosimo's three brothers.<ref name="medicean stars">Sharratt (1996, p.17).</ref> Later astronomers, however, renamed them Galilean satellites in honour of Galileo himself.

A planet with smaller planets orbiting it was problematic for the orderly, comprehensive picture of the geocentric model of the universe, in which everything was supposed to circle around the Earth. As a consequence, many astronomers and philosophers initially refused to believe that Galileo could have discovered such a thing.<ref name=scepticism> Drake (1978, p.158–68), Sharratt (1996, p.18–19).</ref>

Galileo continued to observe the satellites over the next eighteen months, and by mid 1611 he had obtained remarkably accurate estimates for their periods—a feat which Kepler had believed impossible.<ref name=periods> Drake (1978, p.168), Sharratt (1996, p.93).</ref>

From September 1610, Galileo observed that Venus exhibited a full set of phases similar to that of the Moon. The heliocentric model of the solar system developed by Copernicus predicted that all phases would be visible since the orbit of Venus around the Sun would cause its illuminated hemisphere to face the Earth when it was on the opposite side of the Sun and to face away from the Earth when it was on the Earth-side of the Sun. In contrast, the geocentric model of Ptolemy predicted that only crescent and new phases would be seen, since Venus was thought to remain between the Sun and Earth during its orbit around the Earth. Galileo's observations of the phases of Venus proved that it orbited the Sun and lent support to (but did not prove) the heliocentric model.

Galileo also observed the planet Saturn, and at first mistook its rings for planets, thinking it was a three-bodied system. When he observed the planet later, Saturn's rings were directly oriented at Earth, causing him to think that two of the bodies had disappeared. The rings reappeared when he observed the planet in 1616, further confusing him.<ref>Baalke, Ron. Historical Background of Saturn's Rings. Jet Propulsion Laboratory, California Institute of Technology, NASA. Retrieved on 2007-03-11</ref>

Galileo was one of the first Europeans to observe sunspots. He also reinterpreted a sunspot observation from the time of Charlemagne, which formerly had been attributed (impossibly) to a transit of Mercury. The very existence of sunspots showed another difficulty with the unchanging perfection of the heavens as assumed in the older philosophy. And the annual variations in their motions, first noticed by Francesco Sizzi, presented great difficulties for both the geocentric system and that of Tycho Brahe. A dispute over priority in the discovery of sunspots, and in their interpretation, led Galileo to a long and bitter feud with the Jesuit Christoph Scheiner; in fact, there is little doubt that both of them were beaten by David Fabricius and his son Johannes. Scheiner quickly adopted Kepler's 1615 proposal of the modern telescope design, which gave larger magnification at the cost of inverted images; Galileo apparently never changed to Kepler's design.

Galileo was the first to report lunar mountains and craters, whose existence he deduced from the patterns of light and shadow on the Moon's surface. He even estimated the mountains' heights from these observations. This led him to the conclusion that the Moon was "rough and uneven, and just like the surface of the Earth itself," rather than a perfect sphere as Aristotle had claimed. Galileo observed the Milky Way, previously believed to be nebulous, and found it to be a multitude of stars packed so densely that they appeared to be clouds from Earth. He located many other stars too distant to be visible with the naked eye. Galileo also observed the planet Neptune in 1612, but did not realize that it was a planet and took no particular notice of it. It appears in his notebooks as one of many unremarkable dim stars.

Controversy over comets and The Assayer

Main article: The Assayer

In 1619 Galileo became embroiled in a controversy with Father Horatio Grassi, the professor of mathematics at the Jesuit Collegio Romano. It began as a dispute over the nature of comets, but by the time Galileo had published The Assayer (Il Saggiatore) in 1623, his last salvo in the dispute, it had become a much wider argument over the very nature of Science itself. Because The Assayer contains such a wealth of Galileo's ideas on how Science should be practised, it has been referred to as his scientific manifesto.<ref name="scientific manifesto"> Drake (1960, pp.vii,xxiii-xxiv), Sharratt (1996, pp.139-140).</ref>

Early in 1619 Father Grassi had anonymously published a pamphlet, An Astronomical Disputation on the Three Comets of the Year 1618,<ref name="disputatio"> Grassi (1960a).</ref> which discussed the nature of a comet that had appeared late in November of the previous year. Grassi concluded that the comet was a fiery body which had moved along a segment of a great circle at a constant distance from the earth,<ref name="grassi great circle"> Drake (1978, p.268), Grassi (1960a, p.16).</ref> and that it had been located well beyond the moon.

Grassi's arguments and conclusions were criticised in a subsequent article, Discourse on the Comets,<ref name="discourse on comets"> Galilei & Guiducci (1960).</ref> published under the name of one of Galileo's disciples, a Florentine lawyer named Mario Guiducci, although it had been largely written by Galileo himself.<ref name="authorship of discourse"> Drake (1960, p.xvi).</ref> Galileo and Guiducci offered no definitive theory of their own on the nature of comets, <ref name="criticism of previous theories"> Drake (1957, p.222), Drake (1960, p.xvii).</ref> although they did present some tentative conjectures which we now know to be mistaken.

In its opening passage, Galileo and Guiducci's Discourse gratuitously insulted the Jesuit Christopher Scheiner, <ref name="Scheiner insult"> Sharratt (1996, p.135), Drake (1960, p.xii), Galilei & Guiducci (1960, p.24).</ref> and various uncomplimentary remarks about the professors of the Collegio Romano were scattered throughout the work.<ref name="uncomplimentary remark"> Sharratt (1996, p.135).</ref> The Jesuits were offended,<ref name="jesuits offended"> Sharratt (1996, p.135), Drake (1960, p.xvii).</ref> and Grassi soon replied with a polemical tract of his own, The Astronomical and Philosophical Balance,<ref name="astronomical balance"> Grassi (1960b).</ref> under the pseudonym Lothario Sarsi, purporting to be one of his own pupils.

The Assayer,<ref name="the assayer"> Galilei (1960).</ref> was Galileo's devastating reply to the Astronomical Balance. It has been widely regarded as a masterpiece of polemical literature,<ref name="masterpiece of polemics"> Sharratt (1996, p.137), Drake (1957, p.227).</ref> in which "Sarsi's" arguments are subjected to withering scorn.<ref name="withering scorn"> Sharratt (1996, p.138-142).</ref> It was greeted with wide acclaim, and particularly pleased the new pope, Urban VIII, to whom it had been dedicated.<ref name="assayer success"> Drake (1960, p.xix).</ref>

Galileo's dispute with Grassi permanently alienated many of the Jesuits who had previously been sympathetic to his ideas,<ref name="jesuit alienation"> Drake (1960, p.vii).</ref> and Galileo and his friends were convinced that these Jesuits were responsible for bringing about his later condemnation.<ref name="jesuits responsible"> Sharratt (1996, p.175).</ref> The evidence for this is at best equivocal, however.<ref name="evidence of jesuits"> Sharratt (1996, pp.175-178).</ref>

Galileo, Kepler and theories of tides

Cardinal Bellarmine had written in 1615 that the Copernican system could not be defended without "a true [physical] demonstration that the sun does not circle the earth but the earth circles the sun".<ref>Finocchiaro (1989), pp. 67–9.</ref> Galileo considered his theory of the tides to provide the required physical proof of the motion of the earth. This theory was so important to Galileo that he originally intended to entitle his Dialogue on the Two Chief World Systems the Dialogue on the Ebb and Flow of the Sea.<ref>Finocchiaro (1989), p. 354, n. 52</ref> For Galileo, the tides were caused by the sloshing back and forth of water in the seas as a point on the Earth's surface speeded up and slowed down because of the Earth's rotation on its axis and revolution around the Sun. Galileo circulated his first account of the tides in 1616, addressed to Cardinal Orsini.<ref>Finocchiaro (1989), pp.119–133</ref>

If this theory were correct, there would be only one high tide per day. Galileo and his contemporaries were aware of this inadequacy because there are two daily high tides at Venice instead of one, about twelve hours apart. Galileo dismissed this anomaly as the result of several secondary causes, including the shape of the sea, its depth, and other factors.<ref>Finocchiaro (1989), pp.127–131 and Drake (1953), pp. 432–6</ref> Against the assertion that Galileo was deceptive in making these arguments, Albert Einstein expressed the opinion that Galileo developed his "fascinating arguments" and accepted them uncritically out of a desire for physical proof of the motion of the Earth.<ref>Einstein (1952) p. xvii</ref>

Galileo dismissed as a "useless fiction" the idea, held by his contemporary Johannes Kepler, that the moon caused the tides.<ref>Finocchiaro (1989), p. 128</ref> Galileo also refused to accept Kepler's elliptical orbits of the planets,<ref>Sachiko Kusukawa. Starry Messenger. The Telescope, Department of History and Philosophy of Science of the University of Cambridge. Retrieved on 2007-03-10</ref> considering the circle the "perfect" shape for planetary orbits.

Technology

Image:Galilee.jpg
Galileo Galilei. Portrait in crayon by Leoni
Image:Galileo telescope replica.jpg
A replica of the earliest surviving telescope attributed to Galileo Galilei, on display at the Griffith Observatory

Galileo made a number of contributions to what is now known as technology, as distinct from pure physics, and suggested others. This is not the same distinction as made by Aristotle, who would have considered all Galileo's physics as techne or useful knowledge, as opposed to episteme, or philosophical investigation into the causes of things. Between 1595–1598, Galileo devised and improved a Geometric and Military Compass suitable for use by gunners and surveyors. This expanded on earlier instruments designed by Niccolò Tartaglia and Guidobaldo del Monte. For gunners, it offered, in addition to a new and safer way of elevating cannons accurately, a way of quickly computing the charge of gunpowder for cannonballs of different sizes and materials. As a geometric instrument, it enabled the construction of any regular polygon, computation of the area of any polygon or circular sector, and a variety of other calculations. About 1593, Galileo constructed a thermometer, using the expansion and contraction of air in a bulb to move water in an attached tube.

In 1609, Galileo was among the first to use a refracting telescope as an instrument to observe stars, planets or moons. In 1610, he used a telescope at close range to magnify the parts of insects,<ref name="telescope microscope"> Drake (1978, p.163-164), Favaro (1892, 3:163-164)Modèle:La icon.</ref> and by 1624 he had perfected<ref name="microscope perfection">Probably in 1623, according to Drake (1978, p.286).</ref> a compound microscope. He gave one of these instruments to Cardinal Zollern in May of that year for presentation to the Duke of Bavaria,<ref name="Zollern microscope"> Drake (1978, p.289), Favaro (1903, 13:177) Modèle:It icon. </ref> and in September he sent another to Prince Cesi, the founder of the Academy of Lynxes.<ref name="Cesi microscope"> Drake (1978, p.286), Favaro (1903, 13:208)Modèle:It icon. The inventors of the telescope and microscope remain debatable. A general view on this can be found in Hans Lippershey (last updated 2003-08-01), © 1995-2007 by Davidson, Michael W. and the Florida State University. Retrieved 2007-08-28</ref><ref>Van Helden, Al. Galileo Timeline (last updated 1995), The Galileo Project. Retrieved 2007-08-28. See also Timeline of microscope technology.</ref> Illustrations of insects made using one of Galileo's microscopes, and published in 1625, appear to have been the first clear documentation of the use of a compound microscope.<ref name="microscope use"> Drake (1978, p.286).</ref>

In 1612, having determined the orbital periods of Jupiter's satellites, Galileo proposed that with sufficiently accurate knowledge of their orbits one could use their positions as a universal clock, and this would make possible the determination of longitude. He worked on this problem from time to time during the remainder of his life; but the practical problems were severe. The method was first successfully applied by Giovanni Domenico Cassini in 1681 and was later used extensively for large land surveys; this method, for example, was used by Lewis and Clark. For sea navigation, where delicate telescopic observations were more difficult, the longitude problem eventually required development of a practical portable marine chronometer, such as that of John Harrison.

In his last year, when totally blind, he designed an escapement mechanism for a pendulum clock, a vectorial model of which may be seen here. The first fully operational pendulum clock was made by Christiaan Huygens in the 1650s. Galilei created sketches of various inventions, such as a candle and mirror combination to reflect light throughout a building, an automatic tomato picker, a pocket comb that doubled as an eating utensil, and what appears to be a ballpoint pen.

Physics

Galileo's theoretical and experimental work on the motions of bodies, along with the largely independent work of Kepler and René Descartes, was a precursor of the classical mechanics developed by Sir Isaac Newton. He was a pioneer, at least in the European tradition, in performing rigorous experiments and insisting on a mathematical description of the laws of nature.

A biography by Galileo's pupil Vincenzo Viviani stated that Galileo had dropped balls of different masses from the Leaning Tower of Pisa to demonstrate that their time of descent was independent of their mass (excluding the limited effect of air resistance). This was contrary to what Aristotle had taught: that heavy objects fall faster than lighter ones, in direct proportion to weight. While this story has been retold in popular accounts, it is generally accepted by historians that there is no account by Galileo himself of such an experiment, and that it was at most a thought experiment which did not actually take place.<ref>Rick Groleau. Galileo's Battle for the Heavens. July 2002.</ref><ref>Phil Ball. Science history: setting the record straight. June 30, 2005.</ref> Moreover, Giambattista Benedetti had reached the same scientific conclusion years before, in 1553. However, Galileo did perform experiments which proved the same thing by rolling balls down inclined planes:<ref name="inclined planes">Sharratt (1996, pp.75,198); Drake (1978, pp.85–90).</ref> falling or rolling objects (rolling is a slower version of falling, as long as the distribution of mass in the objects is the same) are accelerated independently of their mass. Galileo was the first person to demonstrate this via experiment, but he was not—contrary to popular belief—the first to argue that it was true. John Philoponus had argued this centuries earlier.

Galileo determined the correct mathematical law for acceleration: the total distance covered, starting from rest, is proportional to the square of the time (<math>d \propto t^2</math>). He expressed this law using geometrical constructions and mathematically-precise words, adhering to the standards of the day. (It remained for others to re-express the law in algebraic terms). He also concluded that objects retain their velocity unless a force—often friction—acts upon them, refuting the generally accepted Aristotelian hypothesis that objects "naturally" slow down and stop unless a force acts upon them (again this was not a new idea: Ibn al-Haytham had proposed it centuries earlier, as had Jean Buridan, and according to Joseph Needham, Mo Tzu had proposed it centuries before either of them, but this was the first time that it had been mathematically expressed). Galileo's Principle of Inertia stated: "A body moving on a level surface will continue in the same direction at constant speed unless disturbed." This principle was incorporated into Newton's laws of motion (first law).
Image:Pisa.Duomo.dome.Riminaldi01.jpg
Dome of the cathedral of Pisa with the "lamp of Galileo"

Galileo also noted that a pendulum's swings always take the same amount of time, independently of the amplitude. The story goes that he came to this conclusion by watching the swings of the bronze chandelier in the cathedral of Pisa, using his pulse to time it. While Galileo believed this equality of period to be exact, it is only an approximation appropriate to small amplitudes. It is good enough to regulate a clock, however, as Galileo may have been the first to realize. (See Technology above)

In 1638 Galileo described an experimental method to measure the speed of light by arranging that two observers, each having lanterns equipped with shutters, observe each other's lanterns at some distance. The first observer opens the shutter of his lamp, and, the second, upon seeing the light, immediately opens the shutter of his own lantern. The time between the first observer's opening his shutter and seeing the light from the second observer's lamp indicates the time it takes light to travel back and forth between the two observers. Galileo reported that when he tried this at a distance of less than a mile, he was unable to determine whether or not the light appeared instantaneously.<ref>Galileo Galilei, Two New Sciences, (Madison: Univ. of Wisconsin Pr., 1974) p. 50.</ref> Sometime between Galileo's death and 1667, the members of the Florentine Accademia del Cimento repeated the experiment over a distance of about a mile and obtained a similarly inconclusive result.<ref>I. Bernard Cohen, "Roemer and the First Determination of the Velocity of Light (1676)," Isis, 31 (1940): 327–379, see pp. 332–333</ref>

Galileo is lesser known for, yet still credited with, being one of the first to understand sound frequency. By scraping a chisel at different speeds, he linked the pitch of the sound produced to the spacing of the chisel's skips, a measure of frequency.

In his 1632 Dialogue Galileo presented a physical theory to account for tides, based on the motion of the Earth. If correct, this would have been a strong argument for the reality of the Earth's motion. In fact, the original title for the book described it as a dialogue on the tides; the reference to tides was removed by order of the Inquisition. His theory gave the first insight into the importance of the shapes of ocean basins in the size and timing of tides; he correctly accounted, for instance, for the negligible tides halfway along the Adriatic Sea compared to those at the ends. As a general account of the cause of tides, however, his theory was a failure. Kepler and others correctly associated the Moon with an influence over the tides, based on empirical data; a proper physical theory of the tides, however, was not available until Newton.

Galileo also put forward the basic principle of relativity, that the laws of physics are the same in any system that is moving at a constant speed in a straight line, regardless of its particular speed or direction. Hence, there is no absolute motion or absolute rest. This principle provided the basic framework for Newton's laws of motion and is central to Einstein's special theory of relativity.

Mathematics

While Galileo's application of mathematics to experimental physics was innovative, his mathematical methods were the standard ones of the day. The analysis and proofs relied heavily on the Eudoxian theory of proportion, as set forth in the fifth book of Euclid's Elements. This theory had become available only a century before, thanks to accurate translations by Tartaglia and others; but by the end of Galileo's life it was being superseded by the algebraic methods of Descartes.

Galileo produced one piece of original and even prophetic work in mathematics: Galileo's paradox, which shows that there are as many perfect squares as there are whole numbers, even though most numbers are not perfect squares. Such seeming contradictions were brought under control 250 years later in the work of Georg Cantor.

Church controversy

Main article: Galileo affair
Image:Galileo facing the Roman Inquisition.jpg
Cristiano Banti's 1857 painting Galileo facing the Roman Inquisition

Western Christian biblical references "Psalm 93:1", "Psalm 96:10", and "1 Chronicles 16:30" include text stating that "the world is firmly established, it cannot be moved." In the same tradition, "Psalm 104:5" says, "[the LORD] set the earth on its foundations; it can never be moved." Further, "Ecclesiastes 1:5" states that "And the sun rises and sets and returns to its place, etc."<ref name="Bellarmine quote"> Brodrick (1965, c1964, p.95) quoting Cardinal Bellarmine's letter to Foscarini, dated April 12, 1615. Translated from Favaro (1902, 12:171–172) Modèle:It icon. </ref>

Galileo defended heliocentrism, and claimed it was not contrary to those Scripture passages. He took Augustine's position on Scripture: not to take every passage literally, particularly when the scripture in question is a book of poetry and songs, not a book of instructions or history. The writers of the Scripture wrote from the perspective of the terrestrial world, and from that vantage point the sun does rise and set. In fact, it is the earth's rotation which gives the impression of the sun in motion across the sky.

By 1616 the attacks on Galileo had reached a head, and he went to Rome to try to persuade the Church authorities not to ban his ideas. In the end, Cardinal Bellarmine, acting on directives from the Inquisition, delivered him an order not to "hold or defend" the idea that the Earth moves and the Sun stands still at the centre. The decree did not prevent Galileo from discussing heliocentrism hypothetically. For the next several years Galileo stayed well away from the controversy. He revived his project of writing a book on the subject, encouraged by the election of Cardinal Barberini as Pope Urban VIII in 1623. Barberini was a friend and admirer of Galileo, and had opposed the condemnation of Galileo in 1616. The book, Dialogue Concerning the Two Chief World Systems, was published in 1632, with formal authorization from the Inquisition and papal permission.

Pope Urban VIII personally asked Galileo to give arguments for and against heliocentrism in the book, and to be careful not to advocate heliocentrism. He made another request, that his own views on the matter be included in Galileo's book. Only the latter of those requests was fulfilled by Galileo. Whether unknowingly or deliberate, Simplicius, the defender of the Aristotelian Geocentric view in Dialogue Concerning the Two Chief World Systems, was often caught in his own errors and sometimes came across as a fool. This fact made Dialogue Concerning the Two Chief World Systems appear as an advocacy book; an attack on Aristotelian geocentrism and defense of the Copernican theory. To add insult to injury, Galileo put the words of Pope Urban VIII into the mouth of Simplicius. Most historians agree Galileo did not act out of malice and felt blindsided by the reaction to his book. However, the Pope did not take the public ridicule lightly, nor the blatant bias. Galileo had alienated one of his biggest and most powerful supporters, the Pope, and was called to Rome to defend his writings.

With the loss of many of his defenders in Rome because of Dialogue Concerning the Two Chief World Systems, Galileo was ordered to stand trial on suspicion of heresy in 1633. The sentence of the Inquisition was in three essential parts:

  • Galileo was required to recant his heliocentric ideas; the idea that the Sun is stationary was condemned as "formally heretical." However, while there is no doubt that Pope Urban VIII and the vast majority of Church officials did not believe in heliocentrism, heliocentrism was never formally or officially condemned by the Catholic Church, except insofar as it held (for instance, in the formal condemnation of Galileo) that "The proposition that the sun is in the center of the world and immovable from its place is absurd, philosophically false, and formally heretical; because it is expressly contrary to Holy Scriptures", and the converse as to the Sun's not revolving around the Earth.<ref> The Crime of Galileo: Indictment and Abjuration of 1633
. Modern History Sourcebook  
 

 

. Retrieved on 2007-07-24. </ref>

After a period with the friendly Ascanio Piccolomini (the Archbishop of Siena), Galileo was allowed to return to his villa at Arcetri near Florence, where he spent the remainder of his life under house arrest, and where he later became blind. It was while Galileo was under house arrest that he dedicated his time to one of his finest works, Two New Sciences. Here he summarized work he had done some forty years earlier, on the two sciences now called kinematics and strength of materials. This book has received high praise from both Sir Isaac Newton and Albert Einstein. As a result of this work, Galileo is often called, the "father of modern physics."

Galileo died on January 8, 1642. The Grand Duke of Tuscany, Ferdinando II, wished to bury him in the main body of the Basilica of Santa Croce, next to the tombs of his father and other ancestors, and to erect a marble mausoleum in his honour.<ref name=funeral> Shea & Artigas (2003, p.199); Sobel (2000, p.378).</ref> These plans were scrapped, however, after Pope Urban VIII and his nephew, Cardinal Francesco Barberini, protested.<ref name="funeral protests"> Shea & Artigas (2003, p.199); Sobel (2000, p.378); Sharratt (1996, p.207); Favaro (1906,18:378–80) Modèle:It icon.</ref> He was instead buried in a small room next to the novices' chapel at the end of a corridor from the southern transept of the basilica to the sacristy.<ref name="burial spot"> Shea & Artigas (2003, p.199); Sobel (2000, p.380).</ref> He was reburied in the main body of the basilica in 1737 after a monument had been erected there in his honour.<ref name="reburial spot"> Shea & Artigas (2003, p.200); Sobel (2000, p.380–384).</ref>

The Inquisition's ban on reprinting Galileo's works was lifted in 1718 when permission was granted to publish an edition of his works (excluding the condemned Dialogue) in Florence.<ref name="incomplete works"> Heilbron (2005, p.299).</ref> In 1741 Pope Benedict XIV authorized the publication of an edition of Galileo's complete scientific works<ref name="complete works 1">Two of his non-scientific works, the letters to Castelli and the Grand Duchess Christina, were explicitly not allowed to be included (Coyne 2005, p.347).</ref> which included a mildly censored version of the Dialogue.<ref name="complete works 2"> Heilbron (2005, p.303–04); Coyne (2005, p.347). The uncensored version of the Dialogue remained on the Index of prohibited books, however (Heilbron 2005, p.279).</ref> In 1758 the general prohibition against works advocating heliocentrism was removed from the Index of prohibited books, although the specific ban on uncensored versions of the Dialogue and Copernicus's De Revolutionibus remained.<ref name="ban not lifted"> Heilbron (2005, p.307); Coyne (2005, p.347)</ref> All traces of official opposition to heliocentrism by the Church disappeared in 1835 when these works were finally dropped from the Index.<ref name="ban lifted"> McMullin (2005, p.6); Coyne (2005, p.346). In fact, the Church's opposition had effectively ended in 1820 when a Catholic canon, Giuseppe Settele, was given permission to publish a work which treated heliocentism as a physical fact rather than a mathematical fiction. The 1835 edition of the Index was the first to be issued after that year.</ref>

On 31 October 1992, Pope John Paul II expressed regret for how the Galileo affair was handled, as the result of a study conducted by the Pontifical Council for Culture.<ref> Vatican admits Galileo was right. New Scientist 07 November 1992. Retrieved on 09 August 2007.</ref>

Galileo's writings

Image:Galileo Galilei01.jpg
Statue outside the Uffizi, Florence


Legacy

Galileo in popular culture

Notes

<references />

References

External links

Modèle:Wikiquote

{{#tag:ImageMap| Image:Commons-logo.svg|50px|commons:Accueil default commons:Accueil desc none}}

Wikimedia Commons propose des documents multimédia libres sur Galileo Galilei.

www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;//asv.vatican.va/en/stud/download/CAV_21.htm Original documents on the trial of Galileo Galilei] in the Vatican Secret Archives www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;//www.catholic.net/rcc/Periodicals/Issues/GalileoAffair.html Galileo Affair catholic.net] www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;//galileo.rice.edu/ The Galileo Project] at Rice University www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;//www.pacifier.com/~tpope CCD Images through a Galilean Telescope] Modern recreation of what Galileo might have seen;. www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;//www.mpiwg-berlin.mpg.de/Galileo_Prototype/MAIN.HTM Electronic representation of Galilei's notes on motion (MS. 72)] www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;//www.pbs.org/wgbh/nova/galileo/ PBS Nova Online: Galileo's Battle for the Heavens] www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;//plato.stanford.edu/entries/galileo/ Stanford Encyclopedia of Philosophy entry on Galileo] www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;//www.galilean-library.org The Galilean Library], educational site. www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;//www.catholicleague.org/research/galileo.html Galileo and the Catholic Church] article at Catholic League

www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;//www.life.com/Life/millennium/events/05.html LIFE top 100 events of the millennium: Galileo Galilei] (nr 5 in this list) www-galilee.univ-paris13.fr/institut/institut.php l'institut Galilée] est un pôle scientifique constitué de huit laboratoires de recherche, quatre formations d'ingénieurs et une école doctorale ;//www.intratext.com/Catalogo/Autori/AUT158.HTM Works by Galileo Galilei]: text with concordances and frequencies.

Modèle:PersondataModèle:Link FA Modèle:Link FA Modèle:Link FA Modèle:Link FA Modèle:Link FA Modèle:Link FA

als:Galileo Galilei ar:غاليليو غاليلي an:Galileo Galilei ast:Galileo Galilei az:Qalileo Qaliley bn:গ্যালিলিও গ্যালিলি be:Галілеа Галілей be-x-old:Галілеа Галілей bcl:Galileo Galilei bs:Galileo Galilej br:Galileo Galilei bg:Галилео Галилей ca:Galileo Galilei cs:Galileo Galilei cy:Galileo Galilei da:Galileo Galilei de:Galileo Galilei et:Galileo Galilei el:Γαλιλαίος Γαλιλέι es:Galileo Galilei eo:Galilejo eu:Galileo Galilei fa:گالیلئو گالیله fr:Galileo Galilei ga:Galileo Galilei gd:Galileo Galilei gl:Galileo Galilei ko:갈릴레오 갈릴레이 hy:Գալիլեյ Գալիլեո hi:गालीलेओ गालीलेई hr:Galileo Galilej io:Galileo Galilei id:Galileo Galilei ia:Galileo Galilei ie:Galileo Galilei is:Galíleó Galílei it:Galileo Galilei he:גלילאו גליליי jv:Galileo Galilei ka:გალილეო გალილეი ku:Galileo Galilei lad:Galileo Galilei la:Galilaeus Galilaei lv:Galileo Galilejs lb:Galileo Galilei lt:Galilėjas Galilėjus hu:Galileo Galilei mk:Галилео Галилеј ml:ഗലീലിയോ mt:Galileo Galilei mr:गॅलिलियो ms:Galileo Galilei mn:Галилео Галилей nl:Galileo Galilei ja:ガリレオ・ガリレイ pih:Galileo Galilei no:Galileo Galilei nn:Galileo Galilei nov:Galileo Galilei uz:Galileo Galilei pag:Galileo Galilei pms:Galileo Galilei nds:Galileo Galilei pl:Galileusz pt:Galileu Galilei ro:Galileo Galilei qu:Galileo Galilei ru:Галилей, Галилео sco:Galileo Galilei sq:Galileo Galilei scn:Galileu Galilei simple:Galileo Galilei sk:Galileo Galilei sl:Galileo Galilei sr:Галилео Галилеј sh:Galileo Galilej fi:Galileo Galilei sv:Galileo Galilei tl:Galileo Galilei ta:கலீலியோ கலிலி kab:Galileo Galilei th:กาลิเลโอ กาลิเลอี vi:Galileo Galilei tr:Galileo Galilei uk:Галілей Галілео yi:גאלילעא גאליליי zh-yue:伽利略 diq:Galileo Galilei zh:伽利略·伽利莱